Zefang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2803056/publications.pdf

Version: 2024-02-01

ZEEANC WANC

#	Article	IF	CITATIONS
1	The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Viruses, 2022, 14, 486.	3.3	3
2	Crystal Structures of Wolbachia CidA and CidB Reveal Determinants of Bacteria-induced Cytoplasmic Incompatibility and Rescue. Nature Communications, 2022, 13, 1608.	12.8	15
3	Structural Basis of Zika Virus Helicase in RNA Unwinding and ATP Hydrolysis. ACS Infectious Diseases, 2022, 8, 150-158.	3.8	0
4	Ultra-rapid modulation of neurite outgrowth in a gigahertz acoustic streaming system. Lab on A Chip, 2021, 21, 1948-1955.	6.0	11
5	Yeast cell surface display of bacterial PET hydrolase as a sustainable biocatalyst for the degradation of polyethylene terephthalate. Methods in Enzymology, 2021, 648, 457-477.	1.0	8
6	Structural basis for GTP-induced dimerization and antiviral function of guanylate-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
7	An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin. Analytica Chimica Acta, 2021, 1174, 338709.	5.4	3
8	Structural and mechanistic insights into the complexes formed by <i>Wolbachia</i> cytoplasmic incompatibility factors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
9	Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020, 709, 136138.	8.0	103
10	A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Advanced Healthcare Materials, 2020, 9, e2000364.	7.6	9
11	Crystal structure of the NS3 helicase of tick-borne encephalitis virus. Biochemical and Biophysical Research Communications, 2020, 528, 601-606.	2.1	4
12	Benzene Derivatives from Ink Lead to False Positive Results in Neonatal Hyperphenylalaninemia Screening with Ninhydrin Fluorometric Method. International Journal of Neonatal Screening, 2020, 6, 14.	3.2	2
13	Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Journal of Colloid and Interface Science, 2020, 573, 384-395.	9.4	2
14	Hydrophobin-functionalized film bulk acoustic wave resonators for sensitive and polarity-sensitive sensitive sensing of volatile organic compounds. Applied Physics Letters, 2019, 115, .	3.3	4
15	The crystal structure of main protease from mouse hepatitis virus A59 in complex with an inhibitor. Biochemical and Biophysical Research Communications, 2019, 511, 794-799.	2.1	25
16	Structural insight into the Zika virus capsid encapsulating the viral genome. Cell Research, 2018, 28, 497-499.	12.0	26
17	Effective Bioactivity Retention of Low-Concentration Antibodies on HFBI-Modified Fluorescence ICTS for Sensitive and Rapid Detection of PSA. ACS Applied Materials & amp; Interfaces, 2018, 10, 14549-14558.	8.0	29
18	Mechanism of ATP hydrolysis by the Zika virus helicase. FASEB Journal, 2018, 32, 5250-5257.	0.5	20

ZEFANG WANG

#	Article	IF	CITATIONS
19	Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics, 2018, 8, 3111-3125.	10.0	17
20	The self-assembly of monosubstituted BODIPY and HFBI-RGD. RSC Advances, 2018, 8, 21472-21479.	3.6	8
21	A Mutation Identified in Neonatal Microcephaly Destabilizes Zika Virus NS1 Assembly in Vitro. Scientific Reports, 2017, 7, 42580.	3.3	28
22	One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon, 2017, 116, 695-702.	10.3	20
23	Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nanoâ€Electromechanical Device. Small, 2017, 13, 1602962.	10.0	53
24	Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. European Journal of Medicinal Chemistry, 2017, 137, 450-461.	5.5	75
25	Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discovery, 2017, 3, 17006.	6.7	166
26	The conformational changes of Zika virus methyltransferase upon converting SAM to SAH. Oncotarget, 2017, 8, 14830-14834.	1.8	24
27	Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 2016, 6, 23061.	3.3	14
28	The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein and Cell, 2016, 7, 450-454.	11.0	72
29	Structural basis of Zika virus helicase in recognizing its substrates. Protein and Cell, 2016, 7, 562-570.	11.0	72
30	Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Research, 2016, 26, 1260-1263.	12.0	71
31	Crystallization and preliminary crystallographic study ofPorcine epidemic diarrhea virusmain protease in complex with an inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1608-1611.	0.8	0
32	Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosensors and Bioelectronics, 2010, 26, 1074-1079.	10.1	45
33	Prokaryotic expression, purification, and polyclonal antibody production of a hydrophobin from <italic>Crifola frondosa</italic> . Acta Biochimica Et Biophysica Sinica, 2010, 42, 388-395.	2.0	15
34	Mechanisms of Protein Adhesion on Surface Films of Hydrophobin. Langmuir, 2010, 26, 8491-8496.	3.5	77
35	Expression and characterization of a Grifola frondosa hydrophobin in Pichia pastoris. Protein Expression and Purification, 2010, 72, 19-25.	1.3	43
36	Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology (United Kingdom), 2008, 154, 1677-1685.	1.8	48