Karin S Pfennig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2802865/publications.pdf

Version: 2024-02-01

331259 223531 2,441 49 21 46 citations h-index g-index papers 51 51 51 2663 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Character Displacement: Ecological And Reproductive Responses To A Common Evolutionary Problem. Quarterly Review of Biology, 2009, 84, 253-276.	0.0	355
2	Frequency-dependent Batesian mimicry. Nature, 2001, 410, 323-323.	13.7	198
3	Facultative Mate Choice Drives Adaptive Hybridization. Science, 2007, 318, 965-967.	6.0	196
4	Character Displacement and the Origins of Diversity. American Naturalist, 2010, 176, S26-S44.	1.0	157
5	The evolution of mate choice and the potential for conflict between species and mate–quality recognition. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1743-1748.	1.2	149
6	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	1.0	146
7	Hybridization as a facilitator of species range expansion. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161329.	1.2	131
8	Nesting Success of a Disturbance-Dependent Songbird on Different Kinds of Edges. Exito de Nidacion de un Ave Paserina Dependiente de Disturbaciones en Diferentes Tipos de Bordes. Conservation Biology, 1997, 11, 928-935.	2.4	105
9	DIFFERENTIAL SELECTION TO AVOID HYBRIDIZATION IN TWO TOAD SPECIES. Evolution; International Journal of Organic Evolution, 2002, 56, 1840-1848.	1.1	79
10	A TEST OF ALTERNATIVE HYPOTHESES FOR THE EVOLUTION OF REPRODUCTIVE ISOLATION BETWEEN SPADEFOOT TOADS: SUPPORT FOR THE REINFORCEMENT HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2003, 57, 2842-2851.	1.1	60
11	Looking on the bright side: females prefer coloration indicative of male size and condition in the sexually dichromatic spadefoot toad, Scaphiopus couchii. Behavioral Ecology and Sociobiology, 2007, 62, 127-135.	0.6	60
12	Character displacement as the "best of a bad situation": fitness trade-offs resulting from selection to minimize resource and mate competition. Evolution; International Journal of Organic Evolution, 2005, 59, 2200-8.	1.1	60
13	Population differences in predation on Batesian mimics in allopatry with their model: selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology, 2007, 61, 505-511.	0.6	59
14	Reproductive character displacement generates reproductive isolation among conspecific populations: an artificial neural network study. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1361-1368.	1.2	49
15	Relaxed Genetic Constraint is Ancestral to the Evolution of Phenotypic Plasticity. Integrative and Comparative Biology, 2012, 52, 16-30.	0.9	46
16	Reinforcement as an initiator of population divergence and speciation. Environmental Epigenetics, 2016, 62, 145-154.	0.9	44
17	Reinforcement generates reproductive isolation between neighbouring conspecific populations of spadefoot toads. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140949.	1.2	42
18	Genetic variation during range expansion: effects of habitat novelty and hybridization. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170007.	1.2	37

#	Article	IF	Citations
19	Development and evolution of character displacement. Annals of the New York Academy of Sciences, 2012, 1256, 89-107.	1.8	32
20	Vortex formation and foraging in polyphenic spadefoot toad tadpoles. Behavioral Ecology and Sociobiology, 2012, 66, 879-889.	0.6	28
21	Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads. PLoS ONE, 2012, 7, e32748.	1.1	24
22	Biased Hybridization and Its Impact on Adaptive Introgression. Trends in Ecology and Evolution, 2021, 36, 488-497.	4.2	24
23	Genome of <i>Spea multiplicata </i> , a Rapidly Developing, Phenotypically Plastic, and Desert-Adapted Spadefoot Toad. G3: Genes, Genomes, Genetics, 2019, 9, 3909-3919.	0.8	23
24	Female toads engaging in adaptive hybridization prefer high-quality heterospecifics as mates. Science, 2020, 367, 1377-1379.	6.0	21
25	Character displacement and the evolution of mate choice: an artificial neural network approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 411-419.	1.8	18
26	Failed sperm development as a reproductive isolating barrier between species. Evolution & Development, 2013, 15, 458-465.	1.1	16
27	Male sexual signal predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and local adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180179.	1.8	15
28	Reinforcement and the Proliferation of Species. Journal of Heredity, 2020, 111, 138-146.	1.0	15
29	A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (<i>Spea</i> spp.). Molecular Ecology Resources, 2012, 12, 909-917.	2.2	11
30	Age-Dependent Male Mating Investment in Drosophila pseudoobscura. PLoS ONE, 2014, 9, e88700.	1.1	11
31	Heterospecific interactions and the proliferation of sexually dimorphic traits. Environmental Epigenetics, 2012, 58, 453-462.	0.9	9
32	Diet alters species recognition in juvenile toads. Biology Letters, 2013, 9, 20130599.	1.0	9
33	A condition-dependent male sexual signal predicts adaptive predator-induced plasticity in offspring. Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	8
34	Asymmetric reproductive character displacement in male aggregation behaviour. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2348-2354.	1.2	7
35	Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea) Tj ETQq1 Physiology, 2013, 199, 681-691.	l 1 0.7843 0.7	314 rgBT /Ove 7
36	Variation in hybrid gene expression: Implications for the evolution of genetic incompatibilities in interbreeding species. Molecular Ecology, 2019, 28, 4667-4679.	2.0	7

3

#	Article	IF	CITATIONS
37	Female mate preferences do not predict male sexual signals across populations. Behavioral Ecology, 2021, 32, 1183-1191.	1.0	7
38	Competitively mediated changes in male toad calls can depend on call structure. Behavioral Ecology, 2019, 30, 1344-1350.	1.0	6
39	Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads. Journal of Experimental Biology, 2017, 220, 3135-3141.	0.8	5
40	Character displacement. Current Biology, 2020, 30, R1023-R1024.	1.8	4
41	Differential encoding of signals and preferences by noradrenaline in the anuran brain. Journal of Experimental Biology, 2020, 223, .	0.8	4
42	Leptin Manipulation Reduces Appetite and Causes a Switch in Mating Preference in the Plains Spadefoot Toad (Spea bombifrons). PLoS ONE, 2015, 10, e0125981.	1.1	4
43	Adaptive Plasticity as a Fitness Benefit of Mate Choice. Trends in Ecology and Evolution, 2021, 36, 294-307.	4.2	3
44	Sexual selection's impacts on ecological specialization: an experimental test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150217.	1.2	2
45	Pollen limitation in an experimental population of the wild radish Raphanus raphanistrum. Canadian Journal of Botany, 1997, 75, 72-73.	1.2	1
46	How to survive in a human-dominated world. Science, 2019, 364, 433-434.	6.0	1
47	Response to Comment on "Female toads engaging in adaptive hybridization prefer high-quality heterospecifics as mates― Science, 2020, 370, .	6.0	1
48	Heterospecific interactions and the proliferation of sexually dimorphic traits. Environmental Epigenetics, 2012, 58, 450-459.	0.9	1
49	Male toads change their aggregation behaviour when hybridization is favoured. Animal Behaviour, 2022, 190, 71-79.	0.8	1