Nele De Belie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2802548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydration of blended cement with high volume iron-rich slag from non-ferrous metallurgy. Cement and Concrete Research, 2022, 151, 106624.	4.6	33
2	The effect of (and the potential of recycled) superabsorbent polymers on the water retention capability and bio-receptivity of cementitious materials. Resources, Conservation and Recycling, 2022, 177, 106016.	5.3	9
3	Complete re-utilization of waste concretes–Valorisation pathways and research needs. Resources, Conservation and Recycling, 2022, 177, 105955.	5.3	46
4	Durability of concrete bearing polymer-treated mixed recycled aggregate. Construction and Building Materials, 2022, 315, 125781.	3.2	14
5	M&S Highlight: Hearn (1998), Self-sealing, autogenous healing and continued hydration—What is the difference?. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	0
6	A discrete numerical model for the effects of crack healing on the behaviour of ordinary plain concrete: Implementation, calibration, and validation. Engineering Fracture Mechanics, 2022, 263, 108266.	2.0	25
7	Nanomaterials in self-healing cementitious composites. , 2022, , 141-159.		0
8	Capillary Imbibition in Cementitious Materials: Effect of Salts and Exposure Condition. Materials, 2022, 15, 1569.	1.3	4
9	Comparative environmental and social life cycle assessments of off-shore aquaculture rafts made in ultra-high performance concrete (UHPC). International Journal of Life Cycle Assessment, 2022, 27, 281-300.	2.2	17
10	Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 99.	1.3	10
11	Properties of Concrete with Recycled Aggregates Giving a Second Life to Municipal Solid Waste Incineration Bottom Ash Concrete. Sustainability, 2022, 14, 4679.	1.6	3
12	Influence of sustained compressive load on the carbonation of concrete containing blast furnace slag. Construction and Building Materials, 2022, 335, 127457.	3.2	12
13	Reservoir-Vascular Tubes Network for Self-Healing Concrete: Performance Analysis by Acoustic Emission, Digital Image Correlation and Ultrasound Velocity. Applied Sciences (Switzerland), 2022, 12, 4821.	1.3	12
14	Environmental and economic sustainability of crack mitigation in reinforced concrete with SuperAbsorbent polymers (SAPs). Journal of Cleaner Production, 2022, 358, 131998.	4.6	23
15	Valorization of secondary copper slag as aggregate and cement replacement in ultra-high performance concrete. Journal of Building Engineering, 2022, 54, 104567.	1.6	5
16	Effects of Alumina Nanofibers and Cellulose Nanocrystals on Durability and Self-Healing Capacity of Ultrahigh-Performance Fiber-Reinforced Concretes. Journal of Materials in Civil Engineering, 2022, 34,	1.3	23
17	Self-healing of slag-cement ultra-high performance steel fiber reinforced concrete (UHPFRC) containing sisal fibers as healing conveyor. Journal of Building Engineering, 2022, 54, 104638. 	1.6	4
18	Introduction to a New Extrusion-Based Technology for the Regeneration of Existing Tunnels. , 2022, 17, .		0

#	Article	IF	CITATIONS
19	Durability of self-healing cementitious systems with encapsulated polyurethane evaluated with a new pre-standard test method. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	9
20	Alginate- and sulfonate-based superabsorbent polymers for application in cementitious materials: Effects of kinetics on internal curing and other properties. Cement and Concrete Research, 2022, 159, 106889.	4.6	7
21	Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Construction and Building Materials, 2021, 266, 121447.	3.2	61
22	Long-Term Capillary Imbibition of Mortars with Slag and Fly Ash. RILEM Bookseries, 2021, , 161-171.	0.2	0
23	The Effect of Mechanical Load on Carbonation of Concrete: Discussion on Test Methods and Results. RILEM Bookseries, 2021, , 401-410.	0.2	0
24	Effect of wastes as supplementary cementitious materials on the transport properties of concrete. , 2021, , 191-227.		3
25	Salt-Scaling Resistance of SAP-Modified Concrete Under Freeze–Thaw Cycles. RILEM Bookseries, 2021, , 131-139.	0.2	0
26	Microstructural and Chemical Effects of Accelerated Carbonation of High-Volume Fly Ash Binders in View of Carbon Sequestration. RILEM Bookseries, 2021, , 31-38.	0.2	0
27	Effects of Accelerated Carbonation Testing and by-Product Allocation on the CO2-Sequestration-to-Emission Ratios of Fly Ash-Based Binder Systems. Applied Sciences (Switzerland), 2021, 11, 2781.	1.3	3
28	Application of super absorbent polymers (SAP) in concrete construction—update of RILEM state-of-the-art report. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	68
29	Crystalline Admixture as Healing Promoter in Concrete Exposed to Chloride-Rich Environments: Experimental Study. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	32
30	Chemical Shrinkage of Low Water to Cement (w/c) Ratio CEM I and CEM III Cement Pastes Incorporating Silica Fume and Filler. Materials, 2021, 14, 1164.	1.3	4
31	Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms. Sensors, 2021, 21, 2463.	2.1	6
32	Comparison of liquid absorption-release of superabsorbent polymers in alkali-activated slag and Portland cement systems: An NMR study combined with additional methods. Cement and Concrete Research, 2021, 142, 106369.	4.6	28
33	Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resources, Conservation and Recycling, 2021, 167, 105356.	5.3	61
34	A review of vascular networks for self-healing applications. Smart Materials and Structures, 2021, 30, 063001.	1.8	42
35	Viability determination of Bacillus sphaericus after encapsulation in hydrogel for self-healing concrete via microcalorimetry and in situ oxygen concentration measurements. Cement and Concrete Composites, 2021, 119, 104006.	4.6	32
36	Pore Size Distribution and Surface Multifractal Dimension by Multicycle Mercury Intrusion Porosimetry of GGBFS and Limestone Powder Blended Concrete. Applied Sciences (Switzerland), 2021, 11, 4851.	1.3	8

#	Article	IF	CITATIONS
37	Self-healing characterization of UHPFRCC with crystalline admixture: Experimental assessment via multi-test/multi-parameter approach. Construction and Building Materials, 2021, 283, 122579.	3.2	39
38	The influence of superabsorbent polymers (SAPs) on autogenous shrinkage in cement paste, mortar and concrete. Construction and Building Materials, 2021, 286, 122948.	3.2	36
39	Meta-Analysis of Steel Fiber-Reinforced Concrete Mixtures Leads to Practical Mix Design Methodology. Materials, 2021, 14, 3900.	1.3	5
40	The Durability of Mortar Containing Alkali Activated Fly Ash-Based Lightweight Aggregate. Materials, 2021, 14, 3741.	1.3	8
41	Treatment with nano-silica and bacteria to restore the reduced bond strength between concrete and repair mortar caused by aggressive removal techniques. Cement and Concrete Composites, 2021, 120, 104064.	4.6	11
42	Effect of the Mechanical Load on the Carbonation of Concrete: A Review of the Underlying Mechanisms, Test Methods, and Results. Materials, 2021, 14, 4407.	1.3	17
43	Meta-Analysis and Machine Learning Models to Optimize the Efficiency of Self-Healing Capacity of Cementitious Material. Materials, 2021, 14, 4437.	1.3	22
44	Enhanced durability performance of cracked and uncracked concrete by means of smart in-house developed superabsorbent polymers with alkali-stable and -unstable crosslinkers. Construction and Building Materials, 2021, 297, 123812.	3.2	9
45	Internal curing of cement pastes by means of superabsorbent polymers visualized by neutron tomography. Cement and Concrete Research, 2021, 147, 106528.	4.6	24
46	Early age autogenous shrinkage cracking risk of an ultra-high performance concrete (UHPC) wall: Modelling and experimental results. Engineering Fracture Mechanics, 2021, 257, 108024.	2.0	33
47	An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators. Journal of Building Engineering, 2021, 41, 102400.	1.6	29
48	Innovative Design Concept of Cooling Water Tanks/Basins in Geothermal Power Plants Using Ultra-High-Performance Fiber-Reinforced Concrete with Enhanced Durability. Sustainability, 2021, 13, 9826.	1.6	21
49	Effect of superabsorbent polymers and expansive additives on the shrinkage of alkali-activated slag. Cement and Concrete Composites, 2021, 123, 104218.	4.6	36
50	Innovative SuperAbsorbent Polymers (iSAPs) to construct crack-free reinforced concrete walls: An in-field large-scale testing campaign. Journal of Building Engineering, 2021, 43, 102639.	1.6	9
51	Reactivity Assessment of Modified Ferro Silicate Slag by R3 Method. Applied Sciences (Switzerland), 2021, 11, 366.	1.3	19
52	Influence of Crack Geometry and Crack Width on Carbonation of High-Volume Fly Ash (HVFA) Mortar. RILEM Bookseries, 2021, , 59-67.	0.2	3
53	Effects of Autogenous and Stimulated Self-Healing on Durability and Mechanical Performance of UHPFRC: Validation of Tailored Test Method through Multi-Performance Healing-Induced Recovery Indices. Sustainability, 2021, 13, 11386.	1.6	30
54	An Investigation of Suitable Healing Agents for Vascular-Based Self-Healing in Cementitious Materials. Sustainability, 2021, 13, 12948.	1.6	12

#	Article	IF	CITATIONS
55	Manual Application versus Autonomous Release of Water Repellent Agent to Prevent Reinforcement Corrosion in Cracked Concrete. Processes, 2021, 9, 2101.	1.3	Ο
56	A Methodology to Assess Early Age Fracture Performance of 3D Printable Cementitious Mixes. , 2021, , 27-34.		0
57	Bond strength between concrete and repair mortar and its relation with concrete removal techniques and substrate composition. Construction and Building Materials, 2020, 230, 116900.	3.2	33
58	Mechanism of long-term capillary water uptake in cementitious materials. Cement and Concrete Composites, 2020, 106, 103448.	4.6	28
59	Fracture toughness parameters to assess crack healing capacity of fiber reinforced concrete under repeated cracking-healing cycles. Theoretical and Applied Fracture Mechanics, 2020, 106, 102468.	2.1	27
60	Assessment of the potential of superabsorbent polymers as internal curing agents in concrete by means of optical fiber sensors. Construction and Building Materials, 2020, 238, 117751.	3.2	21
61	Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Construction and Building Materials, 2020, 260, 120485.	3.2	34
62	The Influence of Superabsorbent Polymers and Nanosilica on the Hydration Process and Microstructure of Cementitious Mixtures. Materials, 2020, 13, 5194.	1.3	18
63	Durability-Based Design of Structures Made with Ultra-High-Performance/Ultra-High-Durability Concrete in Extremely Aggressive Scenarios: Application to a Geothermal Water Basin Case Study. Infrastructures, 2020, 5, 102.	1.4	24
64	Tensile behaviour identification in Ultra-High Performance Fibre Reinforced Cementitious Composites: indirect tension tests and back analysis of flexural test results. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	41
65	In-situ crosslinking of superabsorbent polymers as external curing layer compared to internal curing to mitigate plastic shrinkage. Construction and Building Materials, 2020, 262, 120819.	3.2	17
66	Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	123
67	Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules. Science and Technology of Advanced Materials, 2020, 21, 661-682.	2.8	50
68	The impact of slag fineness on the reactivity of blended cements with high-volume non-ferrous metallurgy slag. Construction and Building Materials, 2020, 257, 119400.	3.2	39
69	The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Construction and Building Materials, 2020, 259, 119832.	3.2	41
70	The Contribution of Elastic Wave NDT to the Characterization of Modern Cementitious Media. Sensors, 2020, 20, 2959.	2.1	28
71	Severe Sulfuric Acid Attack on Self-Compacting Concrete with Granulometrically Optimized Blast-Furnace Slag-Comparison of Different Test Methods. Materials, 2020, 13, 1431.	1.3	17
72	Properties of Alkali Activated Lightweight Aggregate Generated from Sidoarjo Volcanic Mud (Lusi), Fly Ash, and Municipal Solid Waste Incineration Bottom Ash. Materials, 2020, 13, 2528.	1.3	17

#	Article	IF	CITATIONS
73	The Use of Superabsorbent Polymers in High Performance Concrete to Mitigate Autogenous Shrinkage in a Large-Scale Demonstrator. Sustainability, 2020, 12, 4741.	1.6	18
74	Translucent self-healing cementitious materials using glass fibers and superabsorbent polymers. Developments in the Built Environment, 2020, 3, 100012.	2.0	12
75	Natural and accelerated carbonation behaviour of high-volume fly ash (HVFA) mortar: Effects on internal moisture, microstructure and carbonated phase proportioning. Cement and Concrete Composites, 2020, 113, 103713.	4.6	7
76	The effect of superabsorbent polymers on the mitigation of plastic shrinkage cracking of conventional concrete, results of an inter-laboratory test by RILEM TC 260-RSC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	26
77	Mixing protocols for plantâ€scale production of concrete with superabsorbent polymers. Structural Concrete, 2020, 21, 983-991.	1.5	9
78	First Large Scale Application with Self-Healing Concrete in Belgium: Analysis of the Laboratory Control Tests. Materials, 2020, 13, 997.	1.3	58
79	Autogenous Healing in Cementitious Materials with Superabsorbent Polymers Quantified by Means of NMR. Scientific Reports, 2020, 10, 642.	1.6	38
80	Evaluation of the Self-Healing Ability of Mortar Mixtures Containing Superabsorbent Polymers and Nanosilica. Materials, 2020, 13, 380.	1.3	41
81	Combined use of superabsorbent polymers and nanosilica for reduction of restrained shrinkage and strength compensation in cementitious mortars. Construction and Building Materials, 2020, 251, 118966.	3.2	42
82	Sealing efficiency of cement-based materials containing extruded cementitious capsules. Construction and Building Materials, 2020, 251, 119039.	3.2	31
83	Kinetics of SAPs During Hardening, Drying and Healing in Cementitious Materials Studied by NMR. RILEM Bookseries, 2020, , 132-139.	0.2	1
84	Comparison of different techniques to study the nanostructure and the microstructure of cementitious materials with and without superabsorbent polymers. Construction and Building Materials, 2019, 223, 244-253.	3.2	29
85	Discussing Different Approaches for the Time-Zero as Start for Autogenous Shrinkage in Cement Pastes Containing Superabsorbent Polymers. Materials, 2019, 12, 2962.	1.3	14
86	The influence of SAPs on chloride ingress in cracked concrete. MATEC Web of Conferences, 2019, 289, 08007.	0.1	6
87	Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation. Applied Microbiology and Biotechnology, 2019, 103, 8825-8838.	1.7	24
88	Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. MATEC Web of Conferences, 2019, 289, 01006.	0.1	12
89	Feasibility study on real-scale, self-healing concrete slab by developing a smart capsules network and assessed by a plethora of advanced monitoring techniques. Construction and Building Materials, 2019, 228, 116780.	3.2	29
90	Evaluation and comparison of traditional methods and Electron Probe Micro Analysis (EPMA) to determine the chloride ingress perpendicular to cracks in self-healing concrete. Construction and Building Materials, 2019, 227, 116789.	3.2	10

#	ARTICLE	IF	CITATIONS
91	Durability of self-healing concrete. MATEC Web of Conferences, 2019, 289, 01003.	0.1	8
92	Recycling ceramic waste powder: effects its grain-size distribution on fresh and hardened properties of cement pastes/mortars formulated from SCC mixes. Journal of Sustainable Cement-Based Materials, 2019, 8, 145-160.	1.7	14
93	Novel active crack width control technique to reduce the variation on water permeability results for self-healing concrete. Construction and Building Materials, 2019, 203, 541-551.	3.2	56
94	Paving with Precast Concrete Made with Recycled Mixed Ceramic Aggregates: A Viable Technical Option for the Valorization of Construction and Demolition Wastes (CDW). Materials, 2019, 12, 24.	1.3	20
95	Towards encapsulation of thiol-ene mixtures: Synthesis of thioacetate cross-linker for in-situ deprotection. Materials Letters, 2019, 249, 165-168.	1.3	3
96	Concrete fracture toughness increase by embedding self-healing capsules using an integrated experimental approach. Construction and Building Materials, 2019, 218, 424-433.	3.2	22
97	The Application of Lysinibacillus sphaericus for Surface Treatment and Crack Healing in Mortar. Frontiers in Built Environment, 2019, 5, .	1.2	12
98	Parameter Study of Superabsorbent Polymers (SAPs) for Use in Durable Concrete Structures. Materials, 2019, 12, 1541.	1.3	31
99	Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and â€~smart' derivatives. European Polymer Journal, 2019, 117, 165-178.	2.6	168
100	Autogenous Healing in Strain-Hardening Cementitious Materials With and Without Superabsorbent Polymers: An 8-Year Study. Frontiers in Materials, 2019, 6, .	1.2	48
101	Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis. Cement and Concrete Research, 2019, 118, 57-68.	4.6	32
102	Accelerated and natural carbonation of concrete with high volumes of fly ash: chemical, mineralogical and microstructural effects. Royal Society Open Science, 2019, 6, 181665.	1.1	21
103	Physical evidence of swelling as the cause of anomalous capillary water uptake by cementitious materials. Cement and Concrete Research, 2019, 120, 256-266.	4.6	61
104	Quantitative analysis on porosity of reactive powder concrete based on automated analysis of back-scattered-electron images. Cement and Concrete Composites, 2019, 96, 1-10.	4.6	27
105	Life cycle assessment applied to recycled aggregate concrete. , 2019, , 207-256.		6
106	An Overview on H2020 Project "ReSHEALience― IABSE Symposium Report, 2019, , .	0.0	8
107	Poly(methyl methacrylate) capsules as an alternative to the â€~'proof-of-concept'' glass capsules usec self-healing concrete. Cement and Concrete Composites, 2018, 89, 260-271.	l in 4.6	66

Screening Encapsulated Polymeric Healing Agents for Carbonation-Exposed Self-Healing Concrete, Service Life Extension, and Environmental Benefit. , 2018, , 83-89.

#	Article	IF	CITATIONS
109	Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resources, Conservation and Recycling, 2018, 133, 288-299.	5.3	82
110	Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Construction and Building Materials, 2018, 167, 115-142.	3.2	183
111	Screening of Different Encapsulated Polymer-Based Healing Agents for Chloride Exposed Self-Healing Concrete Using Chloride Migration Tests. Key Engineering Materials, 2018, 761, 152-158.	0.4	12
112	Recommendation of RILEM TC 238-SCM: determination of the degree of reaction of siliceous fly ash and slag in hydrated cement paste by the selective dissolution method. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	21
113	Rheological behaviour of ultra-high performance cementitious composites containing high amounts of silica fume. Cement and Concrete Composites, 2018, 88, 29-40.	4.6	21
114	Xâ€ray Radiography to Visualize the Rebar–Cementitious Matrix Interface and Judge the Delay in Corrosion through Selfâ€Repair by Encapsulated Polyurethane. Advanced Materials Interfaces, 2018, 5, 1701021.	1.9	9
115	Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. Journal of Sustainable Cement-Based Materials, 2018, 7, 141-159.	1.7	60
116	Numerical modeling of mechanical regain due to self-healing in cement based composites. Cement and Concrete Composites, 2018, 86, 190-205.	4.6	30
117	Perpendicular-to-crack chloride ingress in cracked and autonomously healed concrete. MATEC Web of Conferences, 2018, 199, 02011.	0.1	1
118	Development of an improved cracking method to reduce the variability in testing the healing efficiency of self-healing mortar containing encapsulated polymers. MATEC Web of Conferences, 2018, 199, 02017.	0.1	7
119	Lucas-Washburn vs Richards equation for the modelling of water absorption in cementitious materials. MATEC Web of Conferences, 2018, 199, 02019.	0.1	5
120	Volume Fraction, Thickness, and Permeability of the Sealing Layer in Microbial Self-Healing Concrete Containing Biogranules. Frontiers in Built Environment, 2018, 4, .	1.2	20
121	RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	117
122	Enhanced impact energy absorption in self-healing strain-hardening cementitious materials with superabsorbent polymers. Construction and Building Materials, 2018, 191, 13-22.	3.2	28
123	Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials. Scientific Reports, 2018, 8, 14092.	1.6	27
124	Selfâ€Healing Materials are Coming of Age. Advanced Materials Interfaces, 2018, 5, 1800736.	1.9	7
125	Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers. Cement and Concrete Composites, 2018, 94, 166-180.	4.6	38
126	A Review of Selfâ€Healing Concrete for Damage Management of Structures. Advanced Materials Interfaces, 2018, 5, 1800074.	1.9	412

#	Article	IF	CITATIONS
127	Research Progress on Numerical Models for Selfâ€Healing Cementitious Materials. Advanced Materials Interfaces, 2018, 5, 1701378.	1.9	37
128	Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR. Cement and Concrete Composites, 2018, 93, 54-62.	4.6	73
129	Bacteria-based concrete. , 2018, , 531-567.		20
130	Chloride induced reinforcement corrosion behavior in self-healing concrete with encapsulated polyurethane. Cement and Concrete Research, 2018, 113, 130-139.	4.6	80
131	Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cement and Concrete Research, 2018, 113, 86-98.	4.6	75
132	Self-healing concrete with encapsulated polyurethane. , 2018, , 429-466.		4
133	Experimental Techniques Synergy towards the Design of a Sensing Tool for Autonomously Healed Concrete. Proceedings (mdpi), 2018, 2, .	0.2	0
134	Experimental Characterization of the Self-Healing Capacity of Cement Based Materials: An Overview. Proceedings (mdpi), 2018, 2, 454.	0.2	4
135	The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials, 2018, 11, 141.	1.3	175
136	A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cement and Concrete Composites, 2018, 93, 309-322.	4.6	82
137	Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	132
138	A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Construction and Building Materials, 2018, 179, 619-632.	3.2	119
139	Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate. Cement and Concrete Composites, 2018, 86, 30-39.	4.6	15
140	Isothermal water vapour permeability of concrete with different supplementary cementitious materials. Materiales De Construccion, 2018, 68, 152.	0.2	3
141	Efficiency of self-healing cementitious materials with encapsulated polyurethane to reduce water ingress through cracks. Materiales De Construccion, 2018, 68, .	0.2	16
142	The influence of sodium and magnesium sulphate on the penetration of chlorides in mortar. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	17
143	Influence of Vacuum Mixing on the Carbonation Resistance and Microstructure of Reactive Powder Concrete Containing Secondary Copper Slag as Supplementary Cementitious Material (SCM). Procedia Engineering, 2017, 171, 534-542.	1.2	8
144	Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	101

#	Article	IF	CITATIONS
145	Determination of strength and debonding energy of a glass-concrete interface for encapsulation-based self-healing concrete. Cement and Concrete Composites, 2017, 79, 76-93.	4.6	26
146	Sulfates in Completely Recyclable Concrete and the effect of CaSO4 on the clinker mineralogy. Construction and Building Materials, 2017, 137, 300-306.	3.2	9
147	Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption. Construction and Building Materials, 2017, 145, 157-165.	3.2	62
148	Microbial carbonate precipitation for the improvement of quality of recycled aggregates. Journal of Cleaner Production, 2017, 156, 355-366.	4.6	165
149	Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks. Smart Materials and Structures, 2017, 26, 055031.	1.8	16
150	Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. Cement and Concrete Research, 2017, 98, 44-49.	4.6	64
151	Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, 2017, 101, 5101-5114.	1.7	109
152	Service life and global warming potential of chloride exposed concrete with high volumes of fly ash. Cement and Concrete Composites, 2017, 80, 210-223.	4.6	45
153	Characterization of methacrylated alginate and acrylic monomers as versatile SAPs. Carbohydrate Polymers, 2017, 168, 44-51.	5.1	11
154	Recommendation of RILEM TC 246-TDC: test methods to determine durability of concrete under combined environmental actions and mechanical load. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	11
155	Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar. Carbohydrate Polymers, 2017, 168, 173-181.	5.1	16
156	Test methods to determine durability of concrete under combined environmental actions andÂmechanical load: finalÂreport of RILEM TC 246-TDC. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	32
157	Fracture energy of coarse recycled aggregate concrete using the wedge splitting test method: influence of water-reducing admixtures. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	24
158	Development of amine-based pH-responsive superabsorbent polymers for mortar applications. Construction and Building Materials, 2017, 132, 556-564.	3.2	23
159	Integral procedure to assess crack filling and mechanical contribution of polymer-based healing agent in encapsulation-based self-healing concrete. Cement and Concrete Composites, 2017, 77, 68-80.	4.6	57
160	Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	31
161	Influence of chlorides on magnesium sulphate attack for mortars with Portland cement and slag based binders. Construction and Building Materials, 2017, 155, 630-642.	3.2	38
162	Influence of intensive vacuum mixing and heat treatment on compressive strength and microstructure of reactive powder concrete incorporating secondary copper slag as supplementary cementitious material. Construction and Building Materials, 2017, 155, 400-412.	3.2	50

#	Article	IF	CITATIONS
163	Stability of Pluronic® F127 bismethacrylate hydrogels: Reality or utopia?. Polymer Degradation and Stability, 2017, 146, 201-211.	2.7	23
164	The water kinetics of superabsorbent polymers during cement hydration and internal curing visualized and studied by NMR. Scientific Reports, 2017, 7, 9514.	1.6	111
165	Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time. Cement and Concrete Research, 2017, 100, 153-165.	4.6	85
166	Effects of autogenous healing on the recovery of mechanical performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 1. Cement and Concrete Composites, 2017, 83, 76-100.	4.6	85
167	Sustainability assessment of potentially â€~green' concrete types using life cycle assessment. , 2017, , 235-263.		7
168	Application of encapsulated superabsorbent polymers in cementitious materials for stimulated autogenous healing. Smart Materials and Structures, 2017, 26, 105043.	1.8	37
169	Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate. Construction and Building Materials, 2017, 154, 1015-1023.	3.2	53
170	Sustainable cements in construction: magnesium phosphate cements to stimulate colonization by photosynthetic organisms of building materials. Journal of Sustainable Cement-Based Materials, 2017, 6, 139-148.	1.7	2
171	Monitoring crack movement in polymer-based self-healing concrete through digital image correlation, acoustic emission analysis and SEM in-situ loading. Materials and Design, 2017, 115, 238-246.	3.3	61
172	Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	64
173	Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	117
174	Combinatory approach of methacrylated alginate and acid monomers for concrete applications. Carbohydrate Polymers, 2017, 155, 448-455.	5.1	27
175	Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success?. Materials, 2017, 10, 237.	1.3	113
176	A Novel Design of Autonomously Healed Concrete: Towards a Vascular Healing Network. Materials, 2017, 10, 49.	1.3	88
177	Quantification of the Service Life Extension and Environmental Benefit of Chloride Exposed Self-Healing Concrete. Materials, 2017, 10, 5.	1.3	50
178	Simulation-Aided Design of Tubular Polymeric Capsules for Self-Healing Concrete. Materials, 2017, 10, 10.	1.3	36
179	An overview on the research on self-healing concrete at Politecnico di Milano. MATEC Web of Conferences, 2017, 120, 02001.	0.1	0
180	Cementitious Composites Reinforced with Natural Fibres. Research for Development, 2017, , 197-331.	0.2	4

#	Article	IF	CITATIONS
181	Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products. Materials, 2016, 9, 9.	1.3	14
182	Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials. Materials, 2016, 9, 311.	1.3	31
183	Proposed mechanism for the formation of oxychloride crystals during sodium chloride application as a deicer salt in carbonated concrete. Construction and Building Materials, 2016, 109, 188-197.	3.2	12
184	Performance monitoring of large-scale autonomously healed concrete beams under four-point bending through multiple non-destructive testing methods. Smart Materials and Structures, 2016, 25, 055003.	1.8	40
185	Biopolymers as Novel Tool for Self-Sealing and Self-Healing of Mortar. Materials Research Society Symposia Proceedings, 2016, 1813, 1.	0.1	0
186	Chloride penetration in cracked mortar and the influence of autogenous crack healing. Construction and Building Materials, 2016, 115, 114-124.	3.2	82
187	Citius, altius, fortius/faster, higher, tougher: pushing ahead the boundaries of structural concrete through fiber-reinforced cementitious composites with adapted rheology. Journal of Sustainable Cement-Based Materials, 2016, 5, 135-156.	1.7	4
188	Enhanced crack closure performance of microbial mortar through nitrate reduction. Cement and Concrete Composites, 2016, 70, 159-170.	4.6	138
189	The microstructure of capsule containing self-healing materials: A micro-computed tomography study. Materials Characterization, 2016, 119, 99-109.	1.9	26
190	Autogenous healing on the recovery of mechanical performance ofÂHigh Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 2 – Correlation between healing of mechanical performance and crack sealing. Cement and Concrete Composites, 2016, 73, 299-315.	4.6	66
191	Chloride interaction with concretes subjected to a permanent splitting tensile stress level of 65%. Construction and Building Materials, 2016, 127, 527-538.	3.2	17
192	Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests. Smart Materials and Structures, 2016, 25, 084007.	1.8	73
193	On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing. Smart Materials and Structures, 2016, 25, 084002.	1.8	114
194	Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and Building Materials, 2016, 119, 31-44.	3.2	86
195	Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Materials and Structures/Materiaux Et Constructions, 2016, 49, 225-239.	1.3	47
196	Comparison of different approaches for self-healing concrete in a large-scale lab test. Construction and Building Materials, 2016, 107, 125-137.	3.2	171
197	Self-healing of moving cracks in concrete by means of encapsulated polymer precursors. Construction and Building Materials, 2016, 102, 671-678.	3.2	71
198	Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cement and Concrete Research, 2016, 83, 19-30.	4.6	122

#	Article	IF	CITATIONS
199	Capillary water absorption in cracked and uncracked mortar – A comparison between experimental study and finite element analysis. Construction and Building Materials, 2016, 110, 154-162.	3.2	91
200	Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Applied Microbiology and Biotechnology, 2016, 100, 2993-3007.	1.7	146
201	Bio-Based Self-Healing Concrete: From Research to Field Application. Advances in Polymer Science, 2016, , 345-385.	0.4	44
202	Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength. Construction and Building Materials, 2016, 110, 169-174.	3.2	86
203	Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials. Materials and Design, 2016, 98, 215-222.	3.3	45
204	Methods for measuring pH in concrete: A review. Construction and Building Materials, 2016, 105, 176-188.	3.2	168
205	X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cement and Concrete Composites, 2016, 65, 83-93.	4.6	159
206	Bacteria-based repair and self-healing of concrete. Journal of Sustainable Cement-Based Materials, 2016, 5, 35-56.	1.7	54
207	Repeated Autogenous Healing in Strain-Hardening Cementitious Composites by Using Superabsorbent Polymers. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	121
208	"Collapsible―lightweight aggregate concrete. Part II: characterization under static and dynamic loadings. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1747-1760.	1.3	4
209	"Collapsible―lightweight aggregate concrete. Part I: material concept and preliminary characterization under static loadings. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1733-1745.	1.3	5
210	Setting Control of Completely Recyclable Concrete with Slag and Aluminate Cements. ACI Materials Journal, 2016, 113, .	0.3	0
211	Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology, 2015, 6, 1088.	1.5	144
212	Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Frontiers in Microbiology, 2015, 6, 1228.	1.5	75
213	Selfâ€repair of thermal cracks in concrete sandwich panels. Structural Concrete, 2015, 16, 273-288.	1.5	11
214	Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochemical Engineering Journal, 2015, 101, 108-118.	1.8	148
215	Production of non-axenic ureolytic spores for self-healing concrete applications. Construction and Building Materials, 2015, 93, 1034-1041.	3.2	75
216	The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Cement and Concrete Composites, 2015, 57, 142-152.	4.6	79

#	Article	IF	CITATIONS
217	TC 238-SCM: hydration and microstructure of concrete with SCMs. Materials and Structures/Materiaux Et Constructions, 2015, 48, 835-862.	1.3	189
218	Fines extracted from recycled concrete as alternative raw material for Portland cement clinker production. Cement and Concrete Composites, 2015, 58, 70-80.	4.6	115
219	Evaluation of natural colonisation of cementitious materials: Effect of bioreceptivity and environmental conditions. Science of the Total Environment, 2015, 512-513, 444-453.	3.9	26
220	Physical characterization methods for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3675-3686.	1.3	40
221	Susceptibility of biocalcite-modified fiber cement to biodeterioration. International Biodeterioration and Biodegradation, 2015, 103, 215-220.	1.9	8
222	From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review. Construction and Building Materials, 2015, 95, 774-787.	3.2	117
223	The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments. Cement and Concrete Research, 2015, 77, 26-35.	4.6	107
224	pH-responsive superabsorbent polymers: A pathway to self-healing of mortar. Reactive and Functional Polymers, 2015, 93, 68-76.	2.0	87
225	Screening of bacteria and concrete compatible protection materials. Construction and Building Materials, 2015, 88, 196-203.	3.2	176
226	The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cement and Concrete Research, 2015, 74, 59-67.	4.6	247
227	Use of Secondary Slags in Completely Recyclable Concrete. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	25
228	Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosystems Engineering, 2015, 139, 87-99.	1.9	67
229	Purdocement: application of alkali-activated slag cement in Belgium in the 1950s. Materials and Structures/Materiaux Et Constructions, 2015, 48, 501-511.	1.3	38
230	Design of polymeric capsules for self-healing concrete. Cement and Concrete Composites, 2015, 55, 298-307.	4.6	172
231	Activation of Pozzolanic and Latent-Hydraulic Reactions by Alkalis in Order to Repair Concrete Cracks. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	16
232	pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. Journal of Materials Science, 2015, 50, 970-979.	1.7	117
233	Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3687-3701.	1.3	95
234	Analysis and visualization of water uptake in cracked and healed mortar by water absorption tests and X-ray radiography 2015 12-13		6

X-ray radiography. , 2015, , 12-13.

#	Article	IF	CITATIONS
235	Life Cycle Assessment of Completely Recyclable Concrete. Materials, 2014, 7, 6010-6027.	1.3	133
236	Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Science of the Total Environment, 2014, 481, 232-241.	3.9	58
237	Development of a low pH cementitious material to enlarge bioreceptivity. Construction and Building Materials, 2014, 54, 485-495.	3.2	28
238	Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 2014, 56, 139-152.	4.6	671
239	Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Construction and Building Materials, 2014, 72, 148-157.	3.2	226
240	Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cement and Concrete Composites, 2014, 53, 59-72.	4.6	210
241	A "fracture testing―based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 2014, 68, 535-551.	3.2	221
242	X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites, 2014, 53, 289-304.	4.6	213
243	Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures, 2014, 25, 13-24.	1.4	335
244	The influence of different drying techniques on the water sorption properties of cement-based materials. Cement and Concrete Research, 2014, 64, 54-62.	4.6	111
245	Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 2014, 68, 110-119.	3.2	408
246	The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments. Construction and Building Materials, 2014, 71, 528-537.	3.2	109
247	The hydration of cement regenerated from Completely Recyclable Concrete. Construction and Building Materials, 2014, 60, 33-41.	3.2	17
248	A service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Construction and Building Materials, 2014, 55, 183-193.	3.2	69
249	Influence of active crack width control on the chloride penetration resistance and global warming potential of slabs made with fly ash+silica fume concrete. Construction and Building Materials, 2014, 67, 74-80.	3.2	47
250	Recovery against Environmental Action. RILEM State-of-the-Art Reports, 2013, , 65-117.	0.3	14
251	Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1893-1918.	1.3	91
252	Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion. Materials and Structures/Materiaux Et Constructions, 2013, 46, 89-103.	1.3	48

#	Article	IF	CITATIONS
253	Use of neutron radiography and tomography to visualize the autonomous crack sealing efficiency in cementitious materials. Materials and Structures/Materiaux Et Constructions, 2013, 46, 105-121.	1.3	48
254	Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 2013, 97, 1335-1347.	1.7	100
255	Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure. Cement and Concrete Composites, 2013, 35, 39-48.	4.6	155
256	Feasibility study on the use of cellular concrete as alternative raw material for Portland clinker production. Construction and Building Materials, 2013, 48, 725-733.	3.2	24
257	Performance of BFS concrete: k-Value concept versus equivalent performance concept. Construction and Building Materials, 2013, 47, 441-455.	3.2	27
258	The regeneration of cement out of Completely Recyclable Concrete: Clinker production evaluation. Construction and Building Materials, 2013, 38, 1001-1009.	3.2	32
259	Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation. Scientific World Journal, The, 2013, 2013, 1-10.	0.8	47
260	Self-Healing in Cementitious Materials—A Review. Materials, 2013, 6, 2182-2217.	1.3	650
261	Full probabilistic service life prediction and life cycle assessment of concrete with fly ash and blast-furnace slag in a submerged marine environment: a parameter study. International Journal of Environment and Sustainable Development, 2012, 11, 32.	0.2	19
262	Waste fibrecement: An interesting alternative raw material for a sustainable Portland clinker production. Construction and Building Materials, 2012, 36, 391-403.	3.2	25
263	Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Construction and Building Materials, 2012, 37, 349-359.	3.2	232
264	Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 567-577.	1.4	342
265	Environmental impact and life cycle assessment (LCA) of traditional and â€ ⁻ green' concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 2012, 34, 431-442.	4.6	520
266	Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cement and Concrete Research, 2012, 42, 173-185.	4.6	120
267	Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cement and Concrete Research, 2012, 42, 1113-1121.	4.6	194
268	Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 2012, 26, 532-540.	3.2	538
269	Acoustic emission analysis for the quantification of autonomous crack healing in concrete. Construction and Building Materials, 2012, 28, 333-341.	3.2	133
270	Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosystems Engineering, 2012, 111, 325-335.	1.9	86

#	Article	IF	CITATIONS
271	Clinkering Reactions During Firing of Recyclable Concrete. Journal of the American Ceramic Society, 2012, 95, 1741-1749.	1.9	38
272	Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. Journal of Thermal Analysis and Calorimetry, 2012, 107, 313-320.	2.0	52
273	Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement and Concrete Composites, 2011, 33, 497-505.	4.6	313
274	Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Materials and Structures, 2011, 20, 125016.	1.8	71
275	Microorganisms versus stony materials: a love–hate relationship. Materials and Structures/Materiaux Et Constructions, 2010, 43, 1191-1202.	1.3	48
276	Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Building and Environment, 2010, 45, 832-838.	3.0	168
277	Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. Journal of Thermal Analysis and Calorimetry, 2010, 102, 941-951.	2.0	147
278	Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability. Cement and Concrete Composites, 2010, 32, 749-756.	4.6	65
279	Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 2010, 40, 157-166.	4.6	746
280	Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cement and Concrete Research, 2010, 40, 1723-1733.	4.6	128
281	Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 2010, 36, 118-136.	1.6	1,019
282	Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete. International Biodeterioration and Biodegradation, 2009, 63, 679-689.	1.9	107
283	Measuring the change in ultrasonic p-wave energy transmitted in fresh mortar with additives to monitor the setting. Cement and Concrete Research, 2009, 39, 868-875.	4.6	63
284	Evaluation of the Algaecide Activity of Titanium Dioxide on Autoclaved Aerated Concrete. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	2
285	Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 2008, 22, 875-885.	3.2	452
286	Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 2008, 38, 1005-1014.	4.6	528
287	Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cement and Concrete Research, 2008, 38, 1169-1176.	4.6	156
288	Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete. Magazine of Concrete Research, 2008, 60, 535-545.	0.9	49

#	Article	IF	CITATIONS
289	Frictional Interactions between Bovine Claw and Concrete Floor. Biosystems Engineering, 2007, 96, 565-580.	1.9	11
290	Biomechanical Properties of Bovine Claw Horn. Biosystems Engineering, 2006, 93, 459-467.	1.9	44
291	Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation, 2006, 17, 357-367.	1.5	328
292	Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour. Cement and Concrete Research, 2005, 35, 2087-2094.	4.6	102
293	A sensitivity study for the visualisation of bacterial weathering of concrete and stone with computerised X-ray microtomography. Science of the Total Environment, 2005, 341, 173-183.	3.9	46
294	Cleaning of concrete fouled by lichens with the aid ofThiobacilli. Materials and Structures/Materiaux Et Constructions, 2005, 38, 875-882.	1.3	25
295	Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cement and Concrete Research, 2004, 34, 2223-2236.	4.6	197
296	Resistance of different types of concrete mixtures to sulfuric acid. Materials and Structures/Materiaux Et Constructions, 2003, 36, 242-249.	1.3	60
297	Differences in chewing sounds of dry-crisp snacks by multivariate data analysis. Journal of Sound and Vibration, 2003, 266, 625-643.	2.1	23
298	Apparatus for accelerated degradation testing of concrete specimens. Materials and Structures/Materiaux Et Constructions, 2002, 35, 427-433.	1.3	33
299	USE OF PHYSICO-CHEMICAL METHODS FOR ASSESSMENT OF SENSORY CHANGES IN CARROT TEXTURE AND SWEETNESS DURING COOKING. Journal of Texture Studies, 2002, 33, 367-388.	1.1	31
300	Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement and Concrete Research, 2001, 31, 1359-1365.	4.6	157
301	Application of bacteria in concrete: a critical evaluation of the current status. RILEM Technical Letters, 0, 1, 56-61.	0.0	63
302	Insight into the secondary imbibition rate of concrete and its relationship with curing time. RILEM Technical Letters, 0, 5, 123-130.	0.0	1