
Joshua D Brody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2802084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-affinity CAR T cells exhibit reduced trogocytosis, preventing rapid antigen loss, and increasing CAR T cell expansion. Leukemia, 2022, 36, 1943-1946.	7.2	41
2	Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st–2nd, 2021. Journal of Translational Medicine, 2022, 20, .	4.4	4
3	Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter's transformation. Translational Oncology, 2021, 14, 100977.	3.7	13
4	A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy. Cancer Discovery, 2021, 11, 599-613.	9.4	90
5	Not just neighbours: positive feedback between tumour-associated macrophages and exhausted T cells. Nature Reviews Immunology, 2021, , .	22.7	6
6	Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nature Medicine, 2021, 27, 2099-2103.	30.7	92
7	Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clinical Cancer Research, 2020, 26, 450-464.	7.0	62
8	Adenosine 2A Receptor Blockade as an Immunotherapy for Treatment-Refractory Renal Cell Cancer. Cancer Discovery, 2020, 10, 40-53.	9.4	219
9	Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma: A phase I/II trial. Journal of Experimental Medicine, 2020, 217, .	8.5	26
10	Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies. Blood Advances, 2020, 4, 1917-1926.	5.2	51
11	Reversal of CYLD phosphorylation as a novel therapeutic approach for adult T-cell leukemia/lymphoma (ATLL). Cell Death and Disease, 2020, 11, 94.	6.3	20
12	Myeloma CAR-T CRS Management With IL-1R Antagonist Anakinra. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 632-636.e1.	0.4	31
13	Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade. Cancer Discovery, 2019, 9, 1520-1537.	9.4	12
14	Pathogen Molecular Pattern Receptor Agonists: Treating Cancer by Mimicking Infection. Clinical Cancer Research, 2019, 25, 6283-6294.	7.0	38
15	Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nature Medicine, 2019, 25, 814-824.	30.7	293
16	Immunomodulation Within a Single Tumor Site to Induce Systemic Antitumor Immunity: In Situ Vaccination for Cancer. , 2016, , 129-162.		1
17	Vaccine strategies for the treatment of lymphoma: preclinical progress and clinical trial update. Immunotherapy, 2016, 8, 1335-1346.	2.0	9
18	Lymph nodes can accurately be measured on PET-CT for lymphoma staging/restaging without a concomitant contrast enhanced CT scan. Leukemia and Lymphoma, 2016, 57, 1083-1093.	1.3	3

Joshua D Brody

#	Article	IF	Citations
19	<i>In situ</i> vaccination for the treatment of cancer. Immunotherapy, 2016, 8, 315-330.	2.0	71
20	Dendritic cells and lymphoma cells: come together right now. Blood, 2015, 125, 5-7.	1.4	2
21	Lymphoma: Immune Evasion Strategies. Cancers, 2015, 7, 736-762.	3.7	35
22	<i>In situ</i> vaccination: Cancer immunotherapy both personalized <i>and</i> offâ€ŧheâ€shelf. Molecular Oncology, 2015, 9, 1966-1981.	4.6	139
23	Intratumoral checkpoint subversion as a strategy for minimizing adverse effects. Oncolmmunology, 2014, 3, e27580.	4.6	2
24	In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood, 2012, 119, 355-363.	1.4	202
25	In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study. Journal of Clinical Oncology, 2010, 28, 4324-4332.	1.6	450
26	Immunotransplantation preferentially expands T-effector cells over T-regulatory cells and cures large lymphoma tumors. Blood, 2009, 113, 85-94.	1.4	36