Alberto Escudero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2802075/publications.pdf Version: 2024-02-01

ALREPTO ESCUDERO

#	Article	IF	CITATIONS
1	Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. , 2022, 139, 212966.		2
2	Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 2021, 5, 3788-3812.	5.9	92
3	Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 2021, 9, 58.	2.7	15
4	Large-Scale Synthesis of Hybrid Conductive Polymer–Gold Nanoparticles Using "Sacrificial―Weakly Binding Ligands for Printing Electronics. Inorganic Chemistry, 2021, 60, 17103-17113.	4.0	8
5	Biodegradation of Bi-Labeled Polymer-Coated Rare-Earth Nanoparticles in Adherent Cell Cultures. Chemistry of Materials, 2020, 32, 245-254.	6.7	16
6	Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. International Journal of Molecular Sciences, 2020, 21, 7563.	4.1	7
7	Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper. Small, 2020, 16, e2000928.	10.0	11
8	Engineered polymeric nanovehicles for drug delivery. Frontiers of Nanoscience, 2020, 16, 201-232.	0.6	2
9	Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS Applied Materials & Interfaces, 2019, 11, 41957-41971.	8.0	44
10	Photoluminescence quenching of dye molecules near a resonant silicon nanoparticle. Scientific Reports, 2018, 8, 6107.	3.3	32
11	Laterally and Temporally Controlled Intracellular Staining by Lightâ€Triggered Release of Encapsulated Fluorescent Markers. Chemistry - A European Journal, 2018, 24, 2098-2102.	3.3	35
12	Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry Collections, 2017, , 107-121.	0.5	0
13	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	11.4	221
14	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
15	Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjugate Chemistry, 2017, 28, 556-564.	3.6	39
16	Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials, 2017, 29, 399-461.	6.7	233
17	Europium-doped NaGd(WO ₄) ₂ nanophosphors: synthesis, luminescence and their coating with fluorescein for pH sensing. Dalton Transactions, 2017, 46, 11575-11583.	3.3	26
18	Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, 881-921.	6.0	137

Alberto Escudero

#	Article	IF	CITATIONS
19	Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu ³⁺ , Bi ³⁺ :REVO ₄ nanophosphors for bioimaging and biosensing applications. Nanoscale, 2016, 8, 12221-12236.	5.6	56
20	Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry, 2016, 374, 48.	5.8	47
21	Optical sensing by integration of analyte-sensitive fluorophore to particles. TrAC - Trends in Analytical Chemistry, 2016, 84, 84-96.	11.4	11
22	Quantitative uptake of colloidal particles by cell cultures. Science of the Total Environment, 2016, 568, 819-828.	8.0	35
23	Luminescent rare earth vanadate nanoparticles doped with Eu ³⁺ and Bi ³ for sensing and imaging applications. Proceedings of SPIE, 2016, , .	0.8	4
24	Gold-Based Nanomaterials for Applications in Nanomedicine. Topics in Current Chemistry, 2016, 370, 169-202.	4.0	56
25	Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. CrystEngComm, 2014, 16, 3274.	2.6	41
26	Microwave-Assisted Synthesis of Biocompatible Europium-Doped Calcium Hydroxyapatite and Fluoroapatite Luminescent Nanospindles Functionalized with Poly(acrylic acid). Langmuir, 2013, 29, 1985-1994.	3.5	94
27	Solventâ€Controlled Synthesis and Luminescence Properties of Uniform Eu:YVO ₄ Nanophosphors with Different Morphologies. European Journal of Inorganic Chemistry, 2013, 2013, 1301-1309.	2.0	27
28	Incorporation of Si into TiO2 phases at high pressure. American Mineralogist, 2012, 97, 524-531.	1.9	9
29	Aluminum incorporation in α-PbO2 type TiO2 at pressures up to 20GPa. Physics of the Earth and Planetary Interiors, 2012, 190-191, 87-94.	1.9	4
30	Microstructure, composition and P–T conditions of rutile from diamondiferous gneiss of the Saxonian Erzgebirge, Germany. Chemie Der Erde, 2012, 72, 25-30.	2.0	9
31	Aluminum solubility in TiO2 rutile at high pressure and experimental evidence for a CaCl2-structured polymorph. American Mineralogist, 2012, 97, 1075-1082.	1.9	15
32	Chromium incorporation into TiO2 at high pressure. Journal of Solid State Chemistry, 2012, 190, 61-67.	2.9	14
33	Structural and kinetic study of phase transitions in LaYSi2O7. Journal of the European Ceramic Society, 2012, 32, 2477-2486.	5.7	14
34	Aluminum Incorporation in TiO ₂ Rutile at High Pressure: An XRD and High-Resolution ²⁷ Al NMR Study. Journal of Physical Chemistry C, 2011, 115, 12196-12201.	3.1	18
35	Influence of OHâ^' concentration on the illitization of kaolinite at high pressure. Applied Clay Science, 2011, 51, 220-225.	5.2	2
36	Structural elucidation of β-(Y,Sc) ₂ Si ₂ O ₇ : combined use of ⁸⁹ Y MAS NMR and powder diffraction. Journal of Applied Crystallography, 2011, 44, 846-852.	4.5	15

Alberto Escudero

#	Article	IF	CITATIONS
37	Solid solubility of Yb2Si2O7 in β-, γ- and δ-Y2Si2O7. Journal of Solid State Chemistry, 2011, 184, 1882-1889.	2.9	38
38	Effect of pressure on kaolinite illitization. Applied Clay Science, 2010, 50, 342-347.	5.2	10
39	Application of ²⁹ Si and ²⁷ Al MAS NMR Spectroscopy to the Study of the Reaction Mechanism of Kaolinite to Illite/Muscovite. Clays and Clay Minerals, 2009, 57, 302-310.	1.3	24
40	Mineralogical stability of phyllosilicates in hyperalkaline fluids: Influence of layer nature, octahedral occupation and presence of tetrahedral Al. American Mineralogist, 2009, 94, 1187-1197.	1.9	17
41	Hydrothermal Synthesis of Kalsilite: A Simple and Economical Method. Journal of the American Ceramic Society, 2009, 92, 2204-2206.	3.8	17
42	The hydrothermal conversion of kaolinite to kalsilite: Influence of time, temperature, and pH. American Mineralogist, 2009, 94, 1672-1678.	1.9	29
43	Stability of phyllosilicates in Ca(OH)2 solution: Influence of layer nature, octahedral occupation, presence of tetrahedral Al and degree of crystallinity. Applied Geochemistry, 2009, 24, 1251-1260.	3.0	20
44	Getting more out of X2T2O7 compounds with thortveitite structure: The bond-valence model. Journal of Solid State Chemistry, 2008, 181, 340-344.	2.9	2
45	Polymorphism in the Sc2Si2O7–Y2Si2O7 system. Journal of Solid State Chemistry, 2007, 180, 1436-1445.	2.9	26
46	Structural study of the Lu2Si2O7–Sc2Si2O7 system. Journal of Physics and Chemistry of Solids, 2007, 68, 464-469.	4.0	22
47	Stability of the low temperature polymorphs (y and) of Lu-doped Y2Si2O7. Journal of Physics and Chemistry of Solids, 2007, 68, 1348-1353.	4.0	10
48	Polymorphism in the Lu2â^'xYxSi2O7 system at high temperatures. Journal of the European Ceramic Society, 2006, 26, 2293-2299.	5.7	16
49	XRD and 29Si MAS-NMR spectroscopy across the β-Lu2Si2O7–β-Y2Si2O7 solid solution. Journal of Solid State Chemistry, 2005, 178, 1-7.	2.9	22
50	Phase Transitions in Lu-Doped Y2Si2O7at High Temperatures. Chemistry of Materials, 2005, 17, 112-117.	6.7	16
51	Revision of the crystallographic data of polymorphic Y2Si2O7and Y2SiO5compounds. Phase Transitions, 2004, 77, 1093-1102.	1.3	33
52	Revisiting Y2Si2O7 and Y2SiO5 polymorphic structures by 89Y MAS-NMR spectroscopy. Journal of Solid State Chemistry, 2004, 177, 2783-2789.	2.9	50