List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2801862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longâ€ŧerm changes in temperate marine fish assemblages are driven by a small subset of species. Global Change Biology, 2022, 28, 46-53.	4.2	15
2	Reply to: Shifting baselines and biodiversity success stories. Nature, 2022, 601, E19-E19.	13.7	2
3	Reply to: Emphasizing declining populations in the Living Planet Report. Nature, 2022, 601, E25-E26.	13.7	8
4	Reply to: Do not downplay biodiversity loss. Nature, 2022, 601, E29-E31.	13.7	5
5	Reply to: The Living Planet Index does not measure abundance. Nature, 2022, 601, E16-E16.	13.7	5
6	Source-sink behavioural dynamics limit institutional evolution in a group-structured society. Royal Society Open Science, 2022, 9, 211743.	1.1	5
7	Environmental Seasonality Regulates Community Evenness in Neotropical Bat Communities. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
8	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	2.7	29
9	Late quaternary biotic homogenization of North American mammalian faunas. Nature Communications, 2022, 13, .	5.8	7
10	Widespread underfilling of the potential ranges of North American trees. Journal of Biogeography, 2021, 48, 359-371.	1.4	29
11	Longâ€ŧerm trends indicate that invasive plants are pervasive and increasing in eastern national parks. Ecological Applications, 2021, 31, e02239.	1.8	9
12	A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology, 2021, 102, e03233.	1.5	14
13	The dimensionality and structure of species trait spaces. Ecology Letters, 2021, 24, 1988-2009.	3.0	63
14	Using coverageâ€based rarefaction to infer nonâ€random species distributions. Ecosphere, 2021, 12, e03745.	1.0	13
15	Acoustic Exposure to Turbine Operation Quantifies Risk to Bats at Commercial Wind Energy Facilities. Wildlife Society Bulletin, 2021, 45, 552-565.	0.4	7
16	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
17	Clustered versus catastrophic global vertebrate declines. Nature, 2020, 588, 267-271.	13.7	95
18	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94

BRIAN J MCGILL

#	Article	IF	CITATIONS
19	The geography of biodiversity change in marine and terrestrial assemblages. Science, 2019, 366, 339-345.	6.0	385
20	Unifying macroecology and macroevolution to answer fundamental questions about biodiversity. Global Ecology and Biogeography, 2019, 28, 1925-1936.	2.7	44
21	Species richness change across spatial scales. Oikos, 2019, 128, 1079-1091.	1.2	160
22	Compounding human stressors cause major regeneration debt in over half of eastern US forests. Journal of Applied Ecology, 2019, 56, 1355-1366.	1.9	38
23	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	1.9	18
24	A balance of winners and losers in the Anthropocene. Ecology Letters, 2019, 22, 847-854.	3.0	176
25	Towards a macroscope: Leveraging technology to transform the breadth, scale and resolution of macroecological data. Global Ecology and Biogeography, 2019, 28, 1937-1948.	2.7	20
26	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	4.7	194
27	The what, how and why of doing macroecology. Global Ecology and Biogeography, 2019, 28, 6-17.	2.7	87
28	Phylogenetically weighted regression: A method for modelling nonâ€stationarity on evolutionary trees. Global Ecology and Biogeography, 2019, 28, 275-285.	2.7	6
29	βâ€diversity scaling patterns are consistent across metrics and taxa. Ecography, 2019, 42, 1012-1023.	2.1	30
30	Measurement of Biodiversity (MoB): A method to separate the scaleâ€dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 2019, 10, 258-269.	2.2	87
31	Eastern national parks protect greater tree species diversity than unprotected matrix forests. Forest Ecology and Management, 2018, 414, 74-84.	1.4	14
32	Mechanisms Are Causes, Not Components: A Response to Connolly et al Trends in Ecology and Evolution, 2018, 33, 304-305.	4.2	7
33	Recognizing the â€~sparsely settled forest': Multi-decade socioecological change dynamics and community exemplars. Landscape and Urban Planning, 2018, 170, 177-186.	3.4	10
34	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	1.4	92
35	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	2.2	241
36	Land use and life history limit migration capacity of eastern tree species. Global Ecology and Biogeography, 2018, 27, 57-67.	2.7	39

#	Article	IF	CITATIONS
37	In gratitude for altruistic peer reviewers ―Reviewer and Associate Editor awards 2017. Global Ecology and Biogeography, 2018, 27, 1-1.	2.7	1
38	Plant Functional Diversity and the Biogeography of Biomes in North and South America. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	38
39	Similarities and differences in intrapopulation trait correlations of coâ€occurring tree species: consistent waterâ€use relationships amid widely different correlation patterns. American Journal of Botany, 2018, 105, 1477-1490.	0.8	24
40	Embracing scaleâ€dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 2018, 21, 1737-1751.	3.0	204
41	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
42	A Pleistocene disturbance event describes modern diversity patterns in tidal marsh birds. Ecography, 2018, 41, 684-694.	2.1	3
43	Predictability in community dynamics. Ecology Letters, 2017, 20, 293-306.	3.0	68
44	Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology, 2017, 105, 1775-1790.	1.9	133
45	Less favourable climates constrain demographic strategies in plants. Ecology Letters, 2017, 20, 969-980.	3.0	83
46	<i>GEB</i> goes double blind. Global Ecology and Biogeography, 2017, 26, 1223-1224.	2.7	1
47	Community-level regulation of temporal trends in biodiversity. Science Advances, 2017, 3, e1700315.	4.7	83
48	Predictors of specialist avifaunal decline in coastal marshes. Conservation Biology, 2017, 31, 172-182.	2.4	58
49	The priority of prediction in ecological understanding. Oikos, 2017, 126, 1-7.	1.2	176
50	Trait variation and integration across scales: is the leaf economic spectrum present at local scales?. Ecography, 2017, 40, 685-697.	2.1	165
51	Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 2017, 98, 583-590.	1.5	106
52	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 2016, 180, 141-160.	0.8	59
53	<i>Plantâ€Oâ€Matic</i> : a dynamic and mobile guide to all plants of the Americas. Methods in Ecology and Evolution, 2016, 7, 960-965.	2.2	18
54	A new year with a new leadership team at <scp>GEB</scp> – or how to guarantee your paper gets into <scp>GEB</scp> . Global Ecology and Biogeography, 2016, 25, 1-2.	2.7	4

#	Article	IF	CITATIONS
55	Lyons et al. reply. Nature, 2016, 537, E5-E6.	13.7	0
56	In the company of greatness: announcing the best reviewers and best associate editors. Global Ecology and Biogeography, 2016, 25, 1525-1526.	2.7	1
57	Lyons et al. reply. Nature, 2016, 538, E3-E4.	13.7	1
58	National parks in the eastern <scp>U</scp> nited <scp>S</scp> tates harbor important older forest structure compared with matrix forests. Ecosphere, 2016, 7, e01404.	1.0	21
59	A network approach for inferring species associations from coâ€occurrence data. Ecography, 2016, 39, 1139-1150.	2.1	96
60	Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature, 2016, 529, 80-83.	13.7	147
61	Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA. Environmental Modelling and Software, 2016, 79, 1-9.	1.9	46
62	Constructing multimetric indices and testing ability of landscape metrics to assess condition of freshwater wetlands in the Northeastern US. Ecological Indicators, 2016, 66, 143-152.	2.6	31
63	Rapid biotic homogenization of marine fish assemblages. Nature Communications, 2015, 6, 8405.	5.8	171
64	Strengthening the role of universities in addressing sustainability challenges: the Mitchell Center for Sustainability Solutions as an institutional experiment. Ecology and Society, 2015, 20, .	1.0	43
65	"Communities in the middleâ€! Interactions between drivers of change and place-based characteristics in rural forest-based communities. Journal of Rural Studies, 2015, 42, 79-90.	2.1	23
66	Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology and Evolution, 2015, 30, 104-113.	4.2	527
67	Using multiâ€timescale methods and satelliteâ€derived land surface temperature for the interpolation of daily maximum air temperature in Oregon. International Journal of Climatology, 2015, 35, 3862-3878.	1.5	32
68	The ecological forecast horizon, and examples of its uses and determinants. Ecology Letters, 2015, 18, 597-611.	3.0	242
69	Land use matters. Nature, 2015, 520, 38-39.	13.7	30
70	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 2015, 38, 649-658.	2.1	89
71	Pushing the Pace of Tree Species Migration. PLoS ONE, 2014, 9, e105380.	1.1	22
72	Separating Macroecological Pattern and Process: Comparing Ecological, Economic, and Geological Systems. PLoS ONE, 2014, 9, e112850.	1.1	9

BRIAN J MCGILL

#	Article	IF	CITATIONS
73	A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary. Ecography, 2014, 37, 1095-1108.	2.1	57
74	Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13745-13750.	3.3	319
75	Seasonality drives globalâ€scale diversity patterns in waterfowl (<scp>A</scp> nseriformes) via temporal niche exploitation. Clobal Ecology and Biogeography, 2014, 23, 550-562.	2.7	47
76	Scale dependency in the functional form of the distance decay relationship. Ecography, 2014, 37, 309-320.	2.1	53
77	Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science, 2014, 344, 296-299.	6.0	1,017
78	How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds?. Journal of Biogeography, 2014, 41, 489-500.	1.4	13
79	Managing the middle ground: forests in the transition zone between cities and remote areas. Landscape Ecology, 2014, 29, 1133-1143.	1.9	12
80	Overlooked local biodiversity loss—Response. Science, 2014, 344, 1098-1099.	6.0	9
81	An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature. Remote Sensing, 2014, 6, 8639-8670.	1.8	19
82	Species Assemblages, Macroecology, and Global Change. , 2013, , 651-666.		0
83	How competitive trade-offs limit elevation ranges for temperate-breeding hummingbirds. Canadian Journal of Zoology, 2013, 91, 717-725.	0.4	4
84	Estimating metacommunity extent using data on species abundances, environmental variation, and phylogenetic relationships across geographic space. Ecological Informatics, 2013, 13, 114-122.	2.3	12
85	Intraâ€specific and interâ€specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science, 2013, 24, 921-931.	1.1	157
86	Testing the predictive performance of distribution models. Oikos, 2013, 122, 321-331.	1.2	174
87	Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121931.	1.2	178
88	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	3.0	130
89	The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution, 2012, 27, 244-252.	4.2	1,307
90	Viva la variance! A reply to Nakagawa & Schielzeth. Trends in Ecology and Evolution, 2012, 27, 475-476.	4.2	5

BRIAN J MCGILL

#	Article	IF	CITATIONS
91	Climate, habitat, and species interactions at different scales determine the structure of a Neotropical bat community. Ecology, 2012, 93, 1183-1193.	1.5	34
92	Trees are rarely most abundant where they grow best. Journal of Plant Ecology, 2012, 5, 46-51.	1.2	41
93	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	1.6	107
94	Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485, 494-497.	13.7	772
95	The Limitations of Hierarchical Organization. Philosophy of Science, 2012, 79, 120-140.	0.5	99
96	Detecting changes in forest floor habitat after canopy disturbance. Ecological Research, 2012, 27, 397-406.	0.7	5
97	Determinants of species evenness in a neotropical bat ensemble. Oikos, 2012, 121, 927-941.	1.2	14
98	Demographic Amplification of Climate Change Experienced by the Contiguous United States Population during the 20th Century. PLoS ONE, 2012, 7, e45683.	1.1	4
99	Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Global Ecology and Biogeography, 2011, 20, 532-544.	2.7	101
100	Human-disturbance and caterpillars in managed forest fragments. Biodiversity and Conservation, 2011, 20, 1745-1762.	1.2	8
101	Linking biodiversity patterns by autocorrelated random sampling. American Journal of Botany, 2011, 98, 481-502.	0.8	56
102	Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos, 2010, 119, 591-603.	1.2	92
103	Towards a unification of unified theories of biodiversity. Ecology Letters, 2010, 13, 627-642.	3.0	260
104	How do traits vary across ecological scales? A case for traitâ€based ecology. Ecology Letters, 2010, 13, 838-848.	3.0	633
105	The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity. Diversity, 2010, 2, 1181-1204.	0.7	37
106	Matters of Scale. Science, 2010, 328, 575-576.	6.0	299
107	Simplification of a coffee foliage-dwelling beetle community under low-shade management. Basic and Applied Ecology, 2009, 10, 246-254.	1.2	15
108	Variation in abundance across a species' range predicts climate change responses in the range interior will exceed those at the edge: a case study with North American beaver. Global Change Biology, 2009, 15, 508-522.	4.2	60

#	Article	IF	CITATIONS
109	Taking species abundance distributions beyond individuals. Ecology Letters, 2009, 12, 488-501.	3.0	80
110	Exploring Predictions of Abundance from Body Mass Using Hierarchical Comparative Approaches. American Naturalist, 2008, 172, 88-101.	1.0	71
111	Evolutionary Game Theory and Adaptive Dynamics of Continuous Traits. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 403-435.	3.8	179
112	Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10, 995-1015.	3.0	1,124
113	Can niche-based distribution models outperform spatial interpolation?. Global Ecology and Biogeography, 2007, 16, 733-742.	2.7	166
114	ECOLOGY: A Renaissance in the Study of Abundance. Science, 2006, 314, 770-772.	6.0	52
115	EMPIRICAL EVALUATION OF NEUTRAL THEORY. Ecology, 2006, 87, 1411-1423.	1.5	322
116	Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 2006, 21, 178-185.	4.2	3,525
117	Response to Kearney and Porter: Both functional and community ecologists need to do more for each other. Trends in Ecology and Evolution, 2006, 21, 482-483.	4.2	7
118	Null Versus Neutral Models: What's The Difference?. Ecography, 2006, 29, 793-800.	2.1	195
119	A mechanistic model of a mutualism and its ecological and evolutionary dynamics. Ecological Modelling, 2005, 187, 413-425.	1.2	26
120	Community inertia of Quaternary small mammal assemblages in North America. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16701-16706.	3.3	109
121	Neutral and non-neutral macroecology. Basic and Applied Ecology, 2004, 5, 413-422.	1.2	41
122	Strong and weak tests of macroecological theory. Oikos, 2003, 102, 679-685.	1.2	164
123	Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling artefact?. Ecology Letters, 2003, 6, 766-773.	3.0	115
124	A test of the unified neutral theory of biodiversity. Nature, 2003, 422, 881-885.	13.7	427
125	A macroecological approach to the equilibrial vs. nonequilibrial debate using bird populations and communities. , 0, , 103-118.		0