Man Bock Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2801095/publications.pdf Version: 2024-02-01

MAN BOCK GU

#	Article	IF	CITATIONS
1	Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Research, 2009, 43, 1027-1032.	11.3	483
2	Enzyme stabilization by nano/microsized hybrid materials. Engineering in Life Sciences, 2013, 13, 49-61.	3.6	388
3	Analysis of the Toxic Mode of Action of Silver Nanoparticles Using Stressâ€&pecific Bioluminescent Bacteria. Small, 2008, 4, 746-750.	10.0	374
4	Aptamer-based nanobiosensors. Biosensors and Bioelectronics, 2016, 76, 2-19.	10.1	333
5	Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science Advances, 2019, 5, eaaw2871.	10.3	294
6	Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology, 2009, 94, 320-327.	4.0	252
7	Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosensors and Bioelectronics, 2007, 22, 2525-2531.	10.1	235
8	A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosensors and Bioelectronics, 2010, 26, 1644-1649.	10.1	212
9	Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Developmental Biology, 2010, 339, 188-199.	2.0	176
10	Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology, 2005, 16, S382-S388.	2.6	175
11	Aptamer-based environmental biosensors for small molecule contaminants. Current Opinion in Biotechnology, 2017, 45, 15-23.	6.6	164
12	Electrochemical aptasensor for tetracycline detection. Bioprocess and Biosystems Engineering, 2010, 33, 31-37.	3.4	154
13	ssDNA Aptamer-Based Surface Plasmon Resonance Biosensor for the Detection of Retinol Binding Protein 4 for the Early Diagnosis of Type 2 Diabetes. Analytical Chemistry, 2008, 80, 2867-2873.	6.5	148
14	Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorganic and Medicinal Chemistry, 2008, 16, 7245-7253.	3.0	141
15	A cell array biosensor for environmental toxicity analysis. Biosensors and Bioelectronics, 2005, 21, 500-507.	10.1	138
16	ssDNA aptamers that selectively bind oxytetracycline. Bioorganic and Medicinal Chemistry, 2008, 16, 1254-1261.	3.0	115
17	Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Analytica Chimica Acta, 2009, 634, 250-254.	5.4	109
18	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	10.0	106

#	Article	lF	CITATIONS
19	Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors and Bioelectronics, 2016, 86, 293-300.	10.1	101
20	Aptamer-based sandwich-type biosensors. Journal of Biological Engineering, 2017, 11, 11.	4.7	100
21	An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chemical Communications, 2014, 50, 40-42.	4.1	98
22	A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosensors and Bioelectronics, 2000, 15, 23-30.	10.1	97
23	Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosensors and Bioelectronics, 2001, 16, 667-674.	10.1	94
24	A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosensors and Bioelectronics, 2002, 17, 433-440.	10.1	85
25	Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials, 2011, 192, 1140-1147.	12.4	78
26	An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosensors and Bioelectronics, 2014, 51, 324-329.	10.1	74
27	A bioluminescent sensor for high throughput toxicity classification. Biosensors and Bioelectronics, 2003, 18, 1015-1021.	10.1	73
28	Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosensors and Bioelectronics, 2019, 134, 123-129.	10.1	73
29	Enhanced Degradation of an Endocrine-Disrupting Chemical, Butyl Benzyl Phthalate, by Fusarium oxysporum f. sp. pisi Cutinase. Applied and Environmental Microbiology, 2002, 68, 4684-4688.	3.1	65
30	A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosensors and Bioelectronics, 2017, 93, 21-25.	10.1	65
31	A two-stage minibioreactor system for continuous toxicity monitoring. Biosensors and Bioelectronics, 1999, 14, 355-361.	10.1	64
32	Fabrication of a bio-MEMS based cell-chip for toxicity monitoring. Biosensors and Bioelectronics, 2007, 22, 1586-1592.	10.1	61
33	Degradation of 2,4,6-trinitrotoluene by immobilized horseradish peroxidase and electrogenerated peroxide. Water Research, 2003, 37, 983-992.	11.3	60
34	Advances in Aptamer Screening and Small Molecule Aptasensors. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 29-67.	1.1	60
35	An integrated mini biosensor system for continuous water toxicity monitoring. Biosensors and Bioelectronics, 2005, 20, 1744-1749.	10.1	57
36	Sphingomonassp. Strain SB5 Degrades Carbofuran to a New Metabolite by Hydrolysis at the Furanyl Ring. Journal of Agricultural and Food Chemistry, 2004, 52, 2309-2314.	5.2	56

#	Article	IF	CITATIONS
37	Highly stable trypsinâ€aggregate coatings on polymer nanofibers for repeated protein digestion. Proteomics, 2009, 9, 1893-1900.	2.2	56
38	Highly stable enzyme precipitate coatings and their electrochemical applications. Biosensors and Bioelectronics, 2011, 26, 1980-1986.	10.1	54
39	Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicology and Environmental Safety, 2012, 78, 239-245.	6.0	53
40	Foreign gene expression (?-galactosidase) during the cell cycle phases in recombinant CHO cells. Biotechnology and Bioengineering, 1993, 42, 1113-1123.	3.3	52
41	Highly amplified detection of visceral adipose tissue-derived serpin (vaspin) using a cognate aptamer duo. Biosensors and Bioelectronics, 2015, 70, 261-267.	10.1	51
42	Highly sensitive detection of 25-HydroxyvitaminD 3 by using a target-induced displacement of aptamer. Biosensors and Bioelectronics, 2017, 88, 174-180.	10.1	51
43	Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria. Biosensors and Bioelectronics, 2003, 18, 571-577.	10.1	50
44	Characterization of the Stress Response of a Bioluminescent Biological Sensor in Batch and Continuous Cultures. Biotechnology Progress, 1996, 12, 387-392.	2.6	49
45	Isolation and characterization of enantioselective DNA aptamers for ibuprofen. Bioorganic and Medicinal Chemistry, 2010, 18, 3467-3473.	3.0	49
46	An oxidative stress-specific bacterial cell array chip for toxicity analysis. Biosensors and Bioelectronics, 2007, 22, 2223-2229.	10.1	47
47	Global Gene Response in Saccharomyces cerevisiae Exposed to Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2011, 164, 1278-1291.	2.9	47
48	Detection of Iprobenfos and Edifenphos using a new Multi-aptasensor. Analytica Chimica Acta, 2015, 868, 60-66.	5.4	47
49	A Miniature Bioreactor for Sensing Toxicity Using Recombinant Bioluminescent Escherichia coli Cells. Biotechnology Progress, 1996, 12, 393-397.	2.6	46
50	Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial cells. Radiation and Environmental Biophysics, 2003, 42, 189-192.	1.4	46
51	A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus. Biosensors and Bioelectronics, 2022, 198, 113835.	10.1	46
52	Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains. Biotechnology and Bioprocess Engineering, 2009, 14, 490-495.	2.6	45
53	Construction and characterization of novel dual stress-responsive bacterial biosensors. Biosensors and Bioelectronics, 2004, 19, 977-985.	10.1	44
54	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44

ΜΑΝ ΒΟCΚ GU

#	Article	IF	CITATIONS
55	The affinity ratio—Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosensors and Bioelectronics, 2011, 26, 4058-4063.	10.1	44
56	Electrospun polystyrene–poly(styrene-co-maleic anhydride) nanofiber as a new aptasensor platform. Biosensors and Bioelectronics, 2012, 38, 302-307.	10.1	43
57	Stable and continuous long-term enzymatic reaction using an enzyme–nanofiber composite. Applied Microbiology and Biotechnology, 2007, 75, 1301-1307.	3.6	42
58	Development of a random genomic DNA microarray for the detection and identification of Listeria monocytogenes in milk. International Journal of Food Microbiology, 2013, 161, 134-141.	4.7	41
59	Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. Biosensors and Bioelectronics, 2002, 17, 427-432.	10.1	40
60	Toxicity biomonitoring of degradation byproducts using freeze-dried recombinant bioluminescent bacteria. Analytica Chimica Acta, 2003, 481, 229-238.	5.4	40
61	ssDNA aptamers that recognize diclofenac and 2-anilinophenylacetic acid. Bioorganic and Medicinal Chemistry, 2009, 17, 5380-5387.	3.0	40
62	New Functional Amorphous Calcium Phosphate Nanocomposites by Enzyme-Assisted Biomineralization. ACS Applied Materials & Interfaces, 2013, 5, 532-537.	8.0	40
63	Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. Green Chemistry, 2012, 14, 1884.	9.0	38
64	Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring. Journal of Biotechnology, 2001, 88, 95-105.	3.8	37
65	Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor. Biosensors and Bioelectronics, 2012, 38, 233-238.	10.1	37
66	Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay. Biosensors and Bioelectronics, 2003, 18, 821-826.	10.1	36
67	Carbonic anhydrase assisted calcium carbonate crystalline composites as a biocatalyst. Green Chemistry, 2012, 14, 2216.	9.0	36
68	Effects of endocrine disrupting chemicals on distinct expression patterns of estrogen receptor, cytochrome P450 aromatase and p53 genes inoryzias latipes liver. Journal of Biochemical and Molecular Toxicology, 2003, 17, 272-277.	3.0	35
69	A Multi-Channel Continuous Water Toxicity Monitoring System: Its Evaluation and Application to Water Discharged from a Power Plant. Environmental Monitoring and Assessment, 2005, 109, 123-133.	2.7	35
70	The sensitive detection of ODAM by using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of periodontal disease. Biosensors and Bioelectronics, 2019, 126, 122-128.	10.1	35
71	Development of a DNA Microarray Chip for the Identification of Sludge Bacteria Using an Unsequenced Random Genomic DNA Hybridization Method. Environmental Science & Technology, 2004, 38, 6767-6774.	10.0	32
72	Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosensors and Bioelectronics, 2009, 25, 767-772.	10.1	32

#	Article	IF	CITATIONS
73	A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosensors and Bioelectronics, 2019, 123, 160-166.	10.1	31
74	Screening of Target-Specific Stress-Responsive Genes for the Development of Cell-Based Biosensors Using a DNA Microarray. Analytical Chemistry, 2005, 77, 8020-8026.	6.5	30
75	Sensitive detection of adipokines for early diagnosis of type 2 diabetes using enzyme-linked antibody-aptamer sandwich (ELAAS) assays. Sensors and Actuators B: Chemical, 2012, 168, 243-248.	7.8	30
76	Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Archives of Microbiology, 2005, 184, 25-31.	2.2	29
77	A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Biosensors and Bioelectronics, 2008, 24, 670-675.	10.1	29
78	Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosensors and Bioelectronics, 2006, 22, 192-199.	10.1	27
79	Aptamer duo-based portable electrochemical biosensors for early diagnosis of periodontal disease. Biosensors and Bioelectronics, 2022, 199, 113884.	10.1	27
80	Bacterial bioluminescent emission from recombinant Escherichia coli harboring a recA::luxCDABE fusion. Journal of Proteomics, 2000, 45, 45-56.	2.4	26
81	Detection of VR-2332 Strain of Porcine Reproductive and Respiratory Syndrome Virus Type II Using an Aptamer-Based Sandwich-Type Assay. Analytical Chemistry, 2013, 85, 66-74.	6.5	26
82	Multiple and Simultaneous Detection of Specific Bacteria in Enriched Bacterial Communities Using a DNA Microarray Chip with Randomly Generated Genomic DNA Probes. Analytical Chemistry, 2005, 77, 2311-2317.	6.5	25
83	A novel reflectance-based aptasensor using gold nanoparticles for the detection of oxytetracycline. Analyst, The, 2015, 140, 6671-6675.	3.5	25
84	High-density culture of Escherichia coli carrying recombinant plasmid in a membrane cell recycle fermenter. Enzyme and Microbial Technology, 1989, 11, 49-54.	3.2	23
85	Response of bioluminescent bacteria to sixteen azo dyes. Biotechnology and Bioprocess Engineering, 2003, 8, 101-105.	2.6	23
86	Enhancement in the sensitivity of an immobilized cell-based soil biosensor for monitoring PAH toxicity. Sensors and Actuators B: Chemical, 2004, 97, 272-276.	7.8	23
87	Shape reformable polymeric nanofibers entrapped with QDs as a scaffold for enzyme stabilization. Journal of Materials Chemistry, 2011, 21, 5215.	6.7	23
88	The continuous monitoring of field water samples with a novel multi-channel two-stage mini-bioreactor system. Environmental Monitoring and Assessment, 2001, 70, 71-81.	2.7	22
89	Construction of a nrdA::luxCDABE Fusion and Its Use in Escherichia coli as a DNA Damage Biosensor. Sensors, 2008, 8, 1297-1307.	3.8	22
90	Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring. Lab on A Chip, 2010, 10, 2695.	6.0	22

#	Article	IF	CITATIONS
91	Protein arginine methyltransferase 5 is implicated in the aggressiveness of human hepatocellular carcinoma and controls the invasive activity of cancer cells. Oncology Reports, 2018, 40, 536-544.	2.6	20
92	Salivary microbiota in periodontal health and disease and their changes following nonsurgical periodontal treatment. Journal of Periodontal and Implant Science, 2020, 50, 171.	2.0	20
93	Analysis of Foreign Protein Overproduction in Recombinant CHO Cells Annals of the New York Academy of Sciences, 1994, 721, 194-207.	3.8	19
94	Construction and Evaluation of <i>nagR-nagAa::lux</i> Fusion Strains in Biosensing for Salicylic Acid Derivatives. Applied Biochemistry and Biotechnology, 2005, 120, 183-198.	2.9	19
95	Specific detection of DNA using quantum dots and magnetic beads for large volume samples. Biotechnology and Bioprocess Engineering, 2006, 11, 449-454.	2.6	19
96	A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst, The, 2014, 139, 4696-4701.	3.5	19
97	Differential effect of chlorine on the oxidative stress generation in dormant and active cells within colony biofilm. Water Research, 2009, 43, 5252-5259.	11.3	18
98	High-throughput prescreening of pharmaceuticals using a genome-wide bacterial bioreporter array. Biosensors and Bioelectronics, 2015, 68, 699-704.	10.1	18
99	A whole cell bioluminescent biosensor for the detection of membrane-damaging toxicity. Biotechnology and Bioprocess Engineering, 1999, 4, 59-62.	2.6	17
100	Physicochemical factors affecting the sensitivity of Ceriodaphnia dubia to copper. Environmental Monitoring and Assessment, 2001, 70, 105-116.	2.7	17
101	Performance Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC) Integrated with a Trickling Bed Bioreactor for Biological High-Rate Hydrogen Production. Energy & Fuels, 2008, 22, 83-86.	5.1	17
102	Successful bi-enzyme stabilization for the biomimetic cascade transformation of carbon dioxide. Catalysis Science and Technology, 2016, 6, 7267-7272.	4.1	17
103	Immobilization as a technical possibility for long-term storage of bacterial biosensors. Radiation and Environmental Biophysics, 2005, 44, 69-71.	1.4	16
104	Robust trypsin coating on electrospun polymer nanofibers in rigorous conditions and its uses for protein digestion. Biotechnology and Bioengineering, 2010, 107, 917-923.	3.3	16
105	Aptamers-on-nanofiber as a novel hybrid capturing moiety. Journal of Materials Chemistry, 2011, 21, 19203.	6.7	16
106	Profiling the biological effects of wastewater samples via bioluminescent bacterial biosensors combined with estrogenic assays. Environmental Science and Pollution Research, 2017, 24, 33-41.	5.3	16
107	An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analytical and Bioanalytical Chemistry, 2020, 412, 3373-3381.	3.7	16
108	Characterization ofgltA: luxCDABE fusion inEscherichia coli as a toxicity biosensor. Biotechnology and Bioprocess Engineering, 2006, 11, 516-521.	2.6	15

#	Article	IF	CITATIONS
109	Highly-stable magnetically-separable organic-inorganic hybrid microspheres for enzyme entrapment. Journal of Materials Chemistry, 2011, 21, 6491.	6.7	15
110	Cell cycle analysis of foreign gene (β-galactosidase) expression in recombinant mouse cells under control of mouse mammary tumor virus promoter. , 1996, 50, 229-237.		14
111	Enhancing the sensitivity of a two-stage continuous toxicity monitoring system through the manipulation of the dilution rate. Journal of Biotechnology, 2002, 93, 283-288.	3.8	14
112	Geno-Tox: Cell Array Biochip for Genotoxicity Monitoring and Classification. Applied Biochemistry and Biotechnology, 2012, 168, 752-760.	2.9	14
113	Modular multi-enzyme cascade process using highly stabilized enzyme microbeads. Green Chemistry, 2014, 16, 1163.	9.0	14
114	Aptasensors for environmental monitoring of contaminants in water and soil. Current Opinion in Environmental Science and Health, 2019, 10, 9-21.	4.1	14
115	Characterization of superoxide-stress sensing recombinant Escherichia coli constructed using promoters for genes zwf and fpr fused to lux operon. Applied Microbiology and Biotechnology, 2007, 74, 1276-1283.	3.6	13
116	CO2 bioconversion using carbonic anhydrase (CA): Effects of PEG rigidity on the structure of bio-mineralized crystal composites. Journal of Biotechnology, 2013, 168, 208-211.	3.8	12
117	Aptamerâ€aptamer linkage based aptasensor for highly enhanced detection of small molecules. Biotechnology Journal, 2016, 11, 843-849.	3.5	12
118	Detection and classification of oxidative damaging stresses using recombinant bioluminescent bacteria harboring sodAâ^, pqiâ^, and katGâ^luxCDABE fusions. Enzyme and Microbial Technology, 2004, 35, 540-544.	3.2	11
119	Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions. Biosensors and Bioelectronics, 2004, 20, 475-481.	10.1	11
120	Aptamersâ€inâ€Liposomes for Selective and Multiplexed Capture of Small Organic Compounds. Macromolecular Rapid Communications, 2011, 32, 1169-1173.	3.9	11
121	Toxicity monitoring of endocrine disrupting chemicals (EDCs) using freeze-dried recombinant bioluminescent bacteria. Biotechnology and Bioprocess Engineering, 2000, 5, 395-399.	2.6	10
122	Construction of a functional network for common DNA damage responses in Escherichia coli. Genomics, 2009, 93, 514-524.	2.9	10
123	Detection of Alicyclobacillus Species in Fruit Juice Using a Random Genomic DNA Microarray Chip. Journal of Food Protection, 2011, 74, 933-938.	1.7	10
124	Pilot-scale investigation of sludge reduction in aerobic digestion system with endospore-forming bacteria. Chemosphere, 2017, 186, 202-208.	8.2	10
125	Growth and Induction Kinetics of Inducible and Autoinducible Expression of Heterologous Protein in Suspension Cultures of Recombinant Mouse L Cell Lines. Biotechnology Progress, 1996, 12, 226-233.	2.6	8
126	Expression analysis of stress-specific responsive genes in two-stage continuous cultures of Escherichia coli using cDNA microarray and real-time RT-PCR analysis. Enzyme and Microbial Technology, 2006, 39, 440-446.	3.2	8

ΜΑΝ ΒΟCΚ GU

#	Article	IF	CITATIONS
127	Construction and characterization of Japanese medaka (Oryzias latipes) hepatic cDNA library and its implementation to biomarker screening in aquatic toxicology. Aquatic Toxicology, 2011, 105, 569-575.	4.0	8
128	In-situ on-fabric one-touch colorimetric detection using aptamer-conjugated gold nanoparticles. Biochip Journal, 2013, 7, 180-187.	4.9	8
129	Chemical-specific continuous biomonitoring using a recombinant bioluminescent bacterium DNT5 (nagR-nagAa::luxCDABE). Journal of Biotechnology, 2007, 131, 330-334.	3.8	6
130	Enhancement in the viability and biosensing activity of freeze-dried recombinant bioluminescent bacteria. Biotechnology and Bioprocess Engineering, 2000, 5, 202-206.	2.6	5
131	A Subtractively Optimized DNA Microarray Using Non-sequenced Genomic Probes for the Detection of Food-Borne Pathogens. Applied Biochemistry and Biotechnology, 2011, 164, 183-193.	2.9	5
132	Microcarrier culture of bowes melanoma cells in serum-free medium with Human plasma fraction IV-4+ V. Biotechnology and Bioengineering, 1991, 38, 247-253.	3.3	4
133	Continuous Modular Biomimetic Utilization of Carbon Dioxide toward Multi- and Chemoenzymatic Systems. ACS Catalysis, 2016, 6, 6175-6181.	11.2	3
134	Prescreening of Natural Products in Drug Discovery Using Recombinant Bioluminescent Bacteria. Biotechnology and Bioprocess Engineering, 2019, 24, 264-271.	2.6	3
135	Application of endospore-forming Bacillus species to food waste-recycling wastewater treatment: A focus on the fate of macromolecular nutrients. Journal of Environmental Chemical Engineering, 2022, 10, 107584.	6.7	3
136	Implementation of Random Bacterial Genomic DNA Microarray Chip (RBGDMC) for Screening of Dominant Bacteria in Complex Cultures. Applied Biochemistry and Biotechnology, 2010, 162, 2284-2293.	2.9	1
137	Use of protein stability to develop dual luciferase toxicity bioreporter strains. Biotechnology and Bioprocess Engineering, 2011, 16, 1254-1261.	2.6	1
138	Bio-hybrid inorganic microparticles derived from CO2 for highly efficient and selective removal of antibiotics. Journal of Biological Engineering, 2018, 12, 16.	4.7	1
139	Cold shock response inLactococcus lactis ssp.diacetylactis. Biotechnology and Bioprocess Engineering, 1999, 4, 93-97.	2.6	0
140	Engineering in Life SciencesEditors. Engineering in Life Sciences, 2014, 14, 2-3.	3.6	0
141	Editorial overview: Environmental biotechnology. Current Opinion in Biotechnology, 2017, 45, ix-xi.	6.6	0