
Jean-Marc Edeline

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800939/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Threshold and Reduced Firing Rate of Auditory Cortex Neurons after Cochlear Implant Insertion. Brain Sciences, 2022, 12, 205.	2.3	2
2	Exposure to 1800ÂMHz LTE electromagnetic fields under proinflammatory conditions decreases the response strength and increases the acoustic threshold of auditory cortical neurons. Scientific Reports, 2022, 12, 4063.	3.3	3
3	Unexpected Motherhood-Triggered Hearing Loss in the Two-Pore Channel (TPC) Mutant Mouse. Biomedicines, 2022, 10, 1708.	3.2	2
4	Enhanced Discriminative Abilities of Auditory Cortex Neurons for Pup Calls Despite Reduced Evoked Responses in C57BL/6 Mother Mice. Neuroscience, 2021, 453, 1-16.	2.3	6
5	Robustness to Noise in the Auditory System: A Distributed and Predictable Property. ENeuro, 2021, 8, ENEURO.0043-21.2021.	1.9	9
6	When and How Does the Auditory Cortex Influence Subcortical Auditory Structures? New Insights About the Roles of Descending Cortical Projections. Frontiers in Neuroscience, 2021, 15, 690223.	2.8	12
7	Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cerebral Cortex, 2021, , .	2.9	2
8	Increasing excitation versus decreasing inhibition in auditory cortex: consequences on the discrimination performance between communication sounds. Journal of Physiology, 2020, 598, 3765-3785.	2.9	7
9	Effects of a Single Head Exposure to CSM-1800 MHz Signals on the Transcriptome Profile in the Rat Cerebral Cortex: Enhanced Gene Responses Under Proinflammatory Conditions. Neurotoxicity Research, 2020, 38, 105-123.	2.7	6
10	Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations. Journal of Neuroscience, 2020, 40, 5228-5246.	3.6	26
11	Neuronal Encoding in a High-Level Auditory Area: From Sequential Order of Elements to Grammatical Structure. Journal of Neuroscience, 2019, 39, 6150-6161.	3.6	14
12	A multiscale analysis in CD38 ^{â^'/â^'} mice unveils major prefrontal cortex dysfunctions. FASEB Journal, 2019, 33, 5823-5835.	0.5	19
13	Age-related Changes in Auditory Cortex Without Detectable Peripheral Alterations: A Multi-level Study in Sprague–Dawley Rats. Neuroscience, 2019, 404, 184-204.	2.3	13
14	Neural code: Another breach in the wall?. Behavioral and Brain Sciences, 2019, 42, e232.	0.7	0
15	Assessment of the efficacy of a local steroid rescue treatment administered 2Âdays after a moderate noise-induced trauma in guinea pig. Acta Oto-Laryngologica, 2018, 138, 610-616.	0.9	8
16	Robust Neuronal Discrimination in Primary Auditory Cortex Despite Degradations of Spectro-temporal Acoustic Details: Comparison Between Guinea Pigs with Normal Hearing and Mild Age-Related Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 163-180.	1.8	19
17	ECAP growth function to increasing pulse amplitude or pulse duration demonstrates large inter-animal variability that is reflected in auditory cortex of the guinea pig. PLoS ONE, 2018, 13, e0201771.	2.5	17
18	A Single Exposure to GSM-1800â€ ⁻ MHz Signals in the Course of an Acute Neuroinflammatory Reaction can Alter Neuronal Responses and Microglial Morphology in the Rat Primary Auditory Cortex. Neuroscience, 2018, 385, 11-24.	2.3	13

JEAN-MARC EDELINE

#	Article	IF	CITATIONS
19	Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons. Neuroscience and Biobehavioral Reviews, 2017, 77, 58-73.	6.1	7
20	Acute Neuroinflammation Promotes Cell Responses to 1800ÂMHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotoxicity Research, 2017, 32, 444-459.	2.7	12
21	Are there "local hotspots?―When concepts of cognitive psychology do not fit with physiological results. Behavioral and Brain Sciences, 2016, 39, e208.	0.7	0
22	Stimulusâ€specific effects of noradrenaline in auditory cortex: implications for the discrimination of communication sounds. Journal of Physiology, 2015, 593, 1003-1020.	2.9	26
23	Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes. Neurobiology of Learning and Memory, 2015, 124, 111-122.	1.9	44
24	A New and Fast Characterization of Multiple Encoding Properties of Auditory Neurons. Brain Topography, 2015, 28, 379-400.	1.8	6
25	Neural correlates of moderate hearing loss: time course of response changes in the primary auditory cortex of awake guinea-pigs. Frontiers in Systems Neuroscience, 2014, 8, 65.	2.5	9
26	Is the din really harmless? Long-term effects of non-traumatic noise on the adult auditory system. Nature Reviews Neuroscience, 2014, 15, 483-491.	10.2	67
27	How do auditory cortex neurons represent communication sounds?. Hearing Research, 2013, 305, 102-112.	2.0	39
28	Cortical Inhibition Reduces Information Redundancy at Presentation of Communication Sounds in the Primary Auditory Cortex. Journal of Neuroscience, 2013, 33, 10713-10728.	3.6	48
29	Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex. Journal of Neurophysiology, 2013, 109, 261-272.	1.8	21
30	Making choice between competing rewards in uncertain vs. safe social environment: role of neuronal nicotinic receptors of acetylcholine. Frontiers in Human Neuroscience, 2013, 7, 468.	2.0	24
31	Differences between Spectro-Temporal Receptive Fields Derived from Artificial and Natural Stimuli in the Auditory Cortex. PLoS ONE, 2012, 7, e50539.	2.5	27
32	Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Frontiers in Behavioral Neuroscience, 2012, 6, 45.	2.0	58
33	How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. Journal of Physiology (Paris), 2012, 106, 93-103.	2.1	41
34	Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hearing Research, 2011, 271, 147-158.	2.0	37
35	Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hearing Research, 2011, 274, 75-84.	2.0	103
36	Ageâ€related changes in the guinea pig auditory cortex: relationship with brainstem changes and comparison with toneâ€induced hearing loss. European Journal of Neuroscience, 2011, 34, 1953-1965.	2.6	46

JEAN-MARC EDELINE

#	Article	IF	CITATIONS
37	Effect of Exposure to 1,800ÂMHz Electromagnetic Fields on Heat Shock Proteins and Glial Cells in the Brain of Developing Rats. Neurotoxicity Research, 2011, 20, 109-119.	2.7	35
38	A physiologically based model for temporal envelope encoding in human primary auditory cortex. Hearing Research, 2010, 268, 133-144.	2.0	6
39	A Spike-Timing Code for Discriminating Conspecific Vocalizations in the Thalamocortical System of Anesthetized and Awake Guinea Pigs. Journal of Neuroscience, 2009, 29, 334-350.	3.6	99
40	Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig. Brain Research, 2009, 1304, 66-79.	2.2	46
41	Tonotopic Control of Auditory Thalamus Frequency Tuning by Reticular Thalamic Neurons. Journal of Neurophysiology, 2008, 99, 1137-1151.	1.8	44
42	Neural representations during sleep: From sensory processing to memory traces. Neurobiology of Learning and Memory, 2007, 87, 416-440.	1.9	139
43	Contribution of spike timing to the information transmitted by HVC neurons. European Journal of Neuroscience, 2006, 24, 1091-1108.	2.6	23
44	Selectivity of Canary HVC Neurons for the Bird's Own Song: Modulation by Photoperiodic Conditions. Journal of Neuroscience, 2005, 25, 4952-4963.	3.6	38
45	From Receptive Field Dynamics to the Rate of Transmitted Information: Some Facets of the Thalamocortical Auditory System. Neuroembryology and Aging, 2004, 3, 230-238.	0.1	3
46	Noradrenergic Induction of Selective Plasticity in the Frequency Tuning of Auditory Cortex Neurons. Journal of Neurophysiology, 2004, 92, 1445-1463.	1.8	124
47	Evoked oscillations in unit recordings from the thalamo-cortical auditory system: an aspect of temporal processing or the reflection of hyperpolarized brain states?. Acta Neurobiologiae Experimentalis, 2004, 64, 253-70.	0.7	5
48	Bursts in the medial geniculate body: a comparison between anesthetized and unanesthetized states in guinea pig. Experimental Brain Research, 2003, 153, 573-578.	1.5	22
49	The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research, 2003, 153, 554-572.	1.5	132
50	Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks. Behavioural Brain Research, 2003, 145, 51-61.	2.2	87
51	Does the radial arm maze necessarily test spatial memory?. Neurobiology of Learning and Memory, 2003, 79, 109-117.	1.9	62
52	Evoked Oscillations in the Thalamo-Cortical Auditory System Are Present in Anesthetized but not in Unanesthetized Rats. Journal of Neurophysiology, 2003, 89, 1968-1984.	1.8	57
53	Sex and season influence the proportion of thin spike cells in the canary HVc. NeuroReport, 2002, 13, 2005-2009.	1.2	27
54	Muscimol Diffusion after Intracerebral Microinjections: A Reevaluation Based on Electrophysiological and Autoradiographic Quantifications. Neurobiology of Learning and Memory, 2002, 78, 100-124.	1.9	133

JEAN-MARC EDELINE

#	Article	IF	CITATIONS
55	Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?. Behavioural Brain Research, 2002, 129, 203-210.	2.2	76
56	Differences in auditory and physiological properties of HVc neurons between reproductively active male and female canaries (Serinus canaria). European Journal of Neuroscience, 2001, 14, 1377-1389.	2.6	21
57	Diversity of receptive field changes in auditory cortex during natural sleep. European Journal of Neuroscience, 2001, 14, 1865-1880.	2.6	98
58	Noradrenaline does not change the mode of discharge of auditory cortex neurons. NeuroReport, 2000, 11, 23-26.	1.2	35
59	Auditory Thalamus Neurons During Sleep: Changes in Frequency Selectivity, Threshold, and Receptive Field Size. Journal of Neurophysiology, 2000, 84, 934-952.	1.8	89
60	Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. European Journal of Neuroscience, 1999, 11, 2134-2150.	2.6	86
61	Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology, 1999, 57, 165-224.	5.7	188
62	Effects of Noradrenaline on Frequency Tuning of Rat Auditory Cortex Neurons. European Journal of Neuroscience, 1997, 9, 833-847.	2.6	103
63	The ?2-adrenergic antagonist idazoxan enhances the frequency selectivity and increases the threshold of auditory cortex neurons. Experimental Brain Research, 1995, 107, 221-40.	1.5	22
64	Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty Behavioral Neuroscience, 1993, 107, 82-103.	1.2	194
65	Rapid development of learning-induced receptive field plasticity in the auditory cortex Behavioral Neuroscience, 1993, 107, 539-551.	1.2	212
66	Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Research, 1990, 529, 109-119.	2.2	48
67	Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behavioural Brain Research, 1990, 39, 145-155.	2.2	56
68	Retention of CS-US association learned under ketamine anesthesia. Brain Research, 1988, 457, 274-280.	2.2	30
69	Multiunit changes in hippocampus and medial geniculate body in free-behaving rats during acquisition and retention of a conditioned response to a tone. Behavioral and Neural Biology, 1988, 50, 61-79.	2.2	38
70	Hippocampal associative cellular responses: dissociation with behavioral responses revealed by a transfer-of-control technique. Behavioral and Neural Biology, 1987, 47, 356-368.	2.2	23