List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression. Journal of Biological Chemistry, 2005, 280, 33132-33140.	3.4	984
2	Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling. Journal of Biological Chemistry, 2008, 283, 15319-15327.	3.4	533
3	Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004, 23, 4315-4329.	5.9	461
4	Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 1-16.	5.7	397
5	Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-42.	0.9	392
6	The Runx2 Osteogenic Transcription Factor Regulates Matrix Metalloproteinase 9 in Bone Metastatic Cancer Cells and Controls Cell Invasion. Molecular and Cellular Biology, 2005, 25, 8581-8591.	2.3	280
7	Smooth Muscle Cell–Specific Runx2 Deficiency Inhibits Vascular Calcification. Circulation Research, 2012, 111, 543-552.	4.5	268
8	Dlx3 Transcriptional Regulation of Osteoblast Differentiation: Temporal Recruitment of Msx2, Dlx3, and Dlx5 Homeodomain Proteins to Chromatin of the Osteocalcin Gene. Molecular and Cellular Biology, 2004, 24, 9248-9261.	2.3	261
9	Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor ?1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. Journal of Cellular Biochemistry, 1999, 73, 114-125.	2.6	244
10	Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer and Metastasis Reviews, 2006, 25, 589-600.	5.9	236
11	CCAAT/Enhancer-binding Proteins (C/EBP) β and δ Activate Osteocalcin Gene Transcription and Synergize with Runx2 at the C/EBP Element to Regulate Bone-specific Expression. Journal of Biological Chemistry, 2002, 277, 1316-1323.	3.4	229
12	Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature, 2007, 445, 442-446.	27.8	218
13	Cbfl² interacts with Runx2 and has a critical role in bone development. Nature Genetics, 2002, 32, 639-644.	21.4	207
14	Structural Coupling of Smad and Runx2 for Execution of the BMP2 Osteogenic Signal. Journal of Biological Chemistry, 2008, 283, 8412-8422.	3.4	199
15	Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-41.	0.9	194
16	Regulation of the Bone-Specific Osteocalcin Gene by p300 Requires Runx2/Cbfa1 and the Vitamin D3 Receptor but Not p300 Intrinsic Histone Acetyltransferase Activity. Molecular and Cellular Biology, 2003, 23, 3339-3351.	2.3	190
17	BMP2 Commitment to the Osteogenic Lineage Involves Activation of Runx2 by DLX3 and a Homeodomain Transcriptional Network. Journal of Biological Chemistry, 2006, 281, 40515-40526.	3.4	188
18	Differential Regulation of the Two Principal Runx2/Cbfa1 N-Terminal Isoforms in Response to Bone Morphogenetic Protein-2 during Development of the Osteoblast Phenotype. Endocrinology, 2001, 142, 4026-4039.	2.8	182

#	Article	IF	CITATIONS
19	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. Journal of Cellular Biochemistry, 2001, 80, 424-440.	2.6	177
20	Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1454-1459.	7.1	174
21	runt Homology Domain Transcription Factors (Runx, Cbfa, and AML) Mediate Repression of the Bone Sialoprotein Promoter: Evidence for Promoter Context-Dependent Activity of Cbfa Proteins. Molecular and Cellular Biology, 2001, 21, 2891-2905.	2.3	172
22	Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Research, 2003, 63, 2631-7.	0.9	165
23	A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. Journal of Cell Science, 2001, 114, 3093-3102.	2.0	159
24	Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3189-3194.	7.1	152
25	Nuclear microenvironments in biological control and cancer. Nature Reviews Cancer, 2007, 7, 454-463.	28.4	144
26	Smad function and intranuclear targeting share a Runx2 motif required for osteogenic lineage induction and BMP2 responsive transcription. Journal of Cellular Physiology, 2005, 204, 63-72.	4.1	142
27	Multiple Cbfa/AML Sites in the Rat Osteocalcin Promoter Are Required for Basal and Vitamin D-Responsive Transcription and Contribute to Chromatin Organization. Molecular and Cellular Biology, 1999, 19, 7491-7500.	2.3	141
28	Fidelity of Runx2 Activity in Breast Cancer Cells Is Required for the Generation of Metastases-Associated Osteolytic Disease. Cancer Research, 2004, 64, 4506-4513.	0.9	133
29	Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation. Journal of Bone and Mineral Research, 2014, 29, 2653-2665.	2.8	126
30	Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends in Cell Biology, 2003, 13, 584-592.	7.9	121
31	Runx2 Regulates G Protein-coupled Signaling Pathways to Control Growth of Osteoblast Progenitors. Journal of Biological Chemistry, 2008, 283, 27585-27597.	3.4	114
32	The dynamic organization of geneâ€regulatory machinery in nuclear microenvironments. EMBO Reports, 2005, 6, 128-133.	4.5	107
33	Genetic and Transcriptional Control of Bone Formation. Oral and Maxillofacial Surgery Clinics of North America, 2010, 22, 283-293.	1.0	104
34	A Runx2 threshold for the cleidocranial dysplasia phenotype. Human Molecular Genetics, 2008, 18, 556-568.	2.9	97
35	Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of Cellular Physiology, 2003, 196, 301-311.	4.1	93
36	Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14852-14857.	7.1	88

#	Article	IF	CITATIONS
37	SWI/SNF chromatin remodeling complex is obligatory for BMP2-induced, Runx2-dependent skeletal gene expression that controls osteoblast differentiation. Journal of Cellular Biochemistry, 2005, 94, 720-730.	2.6	84
38	CBFa(AML/PEBP2)-related elements in the TGF-β type I receptor promoter and expression with osteoblast differentiation. Journal of Cellular Biochemistry, 1998, 69, 353-363.	2.6	83
39	Transcription factors RUNX1/AML1 and RUNX2/Cbfa1 dynamically associate with stationary subnuclear domains. Journal of Cell Science, 2002, 115, 4167-4176.	2.0	82
40	Biphasic Peptide Amphiphile Nanomatrix Embedded with Hydroxyapatite Nanoparticles for Stimulated Osteoinductive Response. ACS Nano, 2011, 5, 9463-9479.	14.6	78
41	Specific Residues of RUNX2 Are Obligatory for Formation of BMP2-Induced RUNX2-SMAD Complex to Promote Osteoblast Differentiation. Cells Tissues Organs, 2009, 189, 133-137.	2.3	76
42	Reconstitution of Runx2/Cbfa1â€null cells identifies a requirement for BMP2 signaling through a Runx2 functional domain during osteoblast differentiation. Journal of Cellular Biochemistry, 2007, 100, 434-449.	2.6	74
43	Crystal Structure of the Nuclear Matrix Targeting Signal of the Transcription Factor Acute Myelogenous Leukemia-1/Polyoma Enhancer-binding Protein 2αB/Core Binding Factor α2. Journal of Biological Chemistry, 1999, 274, 33580-33586.	3.4	73
44	Osteogenic differentiation of human mesenchymal stem cells synergistically enhanced by biomimetic peptide amphiphiles combined with conditioned medium. Acta Biomaterialia, 2011, 7, 675-682.	8.3	70
45	Runx2/Cbfa1 Functions: Diverse Regulation of Gene Transcription by Chromatin Remodeling and Co-Regulatory Protein Interactions. Connective Tissue Research, 2003, 44, 141-148.	2.3	56
46	Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. Journal of Cellular Physiology, 2006, 206, 354-362.	4.1	54
47	Myeloma cell–derived Runx2 promotes myeloma progression in bone. Blood, 2015, 125, 3598-3608.	1.4	52
48	Loss of Runx2 in Committed Osteoblasts Impairs Postnatal Skeletogenesis. Journal of Bone and Mineral Research, 2015, 30, 71-82.	2.8	44
49	Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone, 2013, 57, 10-17.	2.9	43
50	Contributions of nuclear architecture and chromatin to vitamin D-dependent transcriptional control of the rat osteocalcin gene. Steroids, 2001, 66, 159-170.	1.8	41
51	Alterations in intranuclear localization of Runx2 affect biological activity. Journal of Cellular Physiology, 2006, 209, 935-942.	4.1	40
52	Specificity Protein 7 Is Required for Proliferation and Differentiation of Ameloblasts and Odontoblasts. Journal of Bone and Mineral Research, 2018, 33, 1126-1140.	2.8	37
53	The Vitamin D Response Element in the Distal Osteocalcin Promoter Contributes to Chromatin Organization of the Proximal Regulatory Domain. Journal of Biological Chemistry, 2004, 279, 43581-43588.	3.4	36
54	Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear targeting and transactivation. Human Molecular Genetics, 2010, 19, 1048-1057.	2.9	35

#	Article	IF	CITATIONS
55	Nuclear microenvironments support assembly and organization of the transcriptional regulatory machinery for cell proliferation and differentiation. Journal of Cellular Biochemistry, 2004, 91, 287-302.	2.6	33
56	Effect of sodium hypochlorite on human pulp cells: an in vitro study. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2011, 112, 662-666.	1.4	29
57	Angiogenic and Osteogenic Synergy of Human Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured on a Nanomatrix. Scientific Reports, 2018, 8, 15749.	3.3	29
58	Intranuclear Trafficking: Organization and Assembly of Regulatory Machinery for Combinatorial Biological Control. Journal of Biological Chemistry, 2004, 279, 43363-43366.	3.4	27
59	Organization of transcriptional regulatory machinery in osteoclast nuclei: Compartmentalization of Runx1. Journal of Cellular Physiology, 2005, 204, 871-880.	4.1	26
60	Quantitative signature for architectural organization of regulatory factors using intranuclear informatics. Journal of Cell Science, 2004, 117, 4889-4896.	2.0	25
61	Leukemia-associated AML1/ETO (8;21) chromosomal translocation protein increases the cellular representation of PML bodies. Journal of Cellular Biochemistry, 2000, 79, 103-112.	2.6	22
62	Runx2 activity in committed osteoblasts is not essential for embryonic skeletogenesis. Connective Tissue Research, 2014, 55, 102-106.	2.3	22
63	Transcriptional Auto-Regulation of RUNX1 P1 Promoter. PLoS ONE, 2016, 11, e0149119.	2.5	22
64	Runx2/Cbfa1 Functions: Diverse Regulation of Gene Transcription by Chromatin Remodeling and Co-Regulatory Protein Interactions. Connective Tissue Research, 2003, 44, 141-148.	2.3	22
65	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	21
66	Organization of transcriptional regulatory machinery in nuclear microenvironments: Implications for biological control and cancer. Advances in Enzyme Regulation, 2007, 47, 242-250.	2.6	21
67	Sp7 and Runx2 molecular complex synergistically regulate expression of target genes. Connective Tissue Research, 2014, 55, 83-87.	2.3	21
68	Subnuclear targeting of Runx1 Is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1. Journal of Cellular Biochemistry, 2005, 96, 795-809.	2.6	20
69	Transcription-factor-mediated epigenetic control of cell fate and lineage commitmentThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB's 51st Annual Meeting– Epigenetics and Chromatin Dynamics, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 1-6.	2.0	20
70	Chondrocyte-Specific Regulatory Activity of Runx2 Is Essential for Survival and Skeletal Development. Cells Tissues Organs, 2011, 194, 161-165.	2.3	20
71	Genetic and epigenetic regulation in nuclear microenvironments for biological control in cancer. Journal of Cellular Biochemistry, 2008, 104, 2016-2026.	2.6	18
72	Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Research, 2020, 80, 1036-1048.	0.9	18

#	Article	IF	CITATIONS
73	Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget, 2016, 7, 11299-11309.	1.8	15
74	Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biology Plus, 2021, 12, 100088.	3.5	15
75	MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Molecular and Cellular Biology, 2015, 35, 3116-3130.	2.3	14
76	Intranuclear organization of RUNX transcriptional regulatory machinery in biological control of skeletogenesis and cancer. Blood Cells, Molecules, and Diseases, 2003, 30, 170-176.	1.4	13
77	Dwarfism in homozygous Agc1 ^{CreERT} mice is associated with decreased expression of aggrecan. Genesis, 2017, 55, e23070.	1.6	13
78	Altered chromatin modifications in <i>AML1/RUNX1</i> breakpoint regions involved in (8;21) translocation. Journal of Cellular Physiology, 2009, 218, 343-349.	4.1	12
79	Combinatorial organization of the transcriptional regulatory machinery in biological control and cancer. Advances in Enzyme Regulation, 2005, 45, 136-154.	2.6	9
80	Runx2 Regulates the Gene Network Associated with Insulin Signaling and Energy Homeostasis. Cells Tissues Organs, 2011, 194, 232-237.	2.3	8
81	Insight into Regulatory Factor Targeting to Transcriptionally Active Subnuclear Sites. Experimental Cell Research, 1999, 253, 110-116.	2.6	6
82	Nuclear microenvironments support physiological control of gene expression. Chromosome Research, 2003, 11, 527-536.	2.2	6
83	Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2019, 10, 2063.	4.8	6
84	Dentin and Bone: Similar Collagenous Mineralized Tissues. , 2010, , 183-200.		6
85	Runx2 Deficiency in Osteoblasts Promotes Myeloma Resistance to Bortezomib by Increasing TSP-1–Dependent TGFβ1 Activation and Suppressing Immunity in Bone Marrow. Molecular Cancer Therapeutics, 2022, 21, 347-358.	4.1	6
86	<i>In Situ</i> Immunofluorescence Analysis: Immunofluorescence Microscopy. , 2004, 285, 023-028.		5
87	Organization, Integration, and Assembly of Genetic and Epigenetic Regulatory Machinery in Nuclear Microenvironments. Annals of the New York Academy of Sciences, 2009, 1155, 4-14.	3.8	5
88	Chromatin Immunoprecipitation Assays: Application of ChIP-on-Chip for Defining Dynamic Transcriptional Mechanisms in Bone Cells. Methods in Molecular Biology, 2008, 455, 165-176.	0.9	5
89	Subnuclear Localization and Intranuclear Trafficking of Transcription Factors. Methods in Molecular Biology, 2010, 647, 77-93.	0.9	4
90	Epigenetic remodeling and modification to preserve skeletogenesis in vivo. Connective Tissue Research, 2018, 59, 52-54.	2.3	4

#	Article	IF	CITATIONS
91	Involvement of Nuclear Architecture in Regulating Gene Expression in Bone Cells. , 2002, , 169-XVII.		4
92	Protein–Deoxyribonucleic Acid Interactions Linked to Gene Expression: Electrophoretic Mobility Shift Assay. , 2004, 285, 045-056.		3
93	Specificity protein 7 is not essential for tooth morphogenesis. Connective Tissue Research, 2014, 55, 88-91.	2.3	3
94	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	3
95	Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. Journal of Cellular Biochemistry, 2003, 88, 340-355.	2.6	2
96	<i>In Situ</i> Immunofluorescence Analysis: Analyzing RNA Synthesis by 5-Bromouridine-5'-Triphosphate Labeling. , 2004, 285, 029-032.		2
97	Chromatin Immunoprecipitation. , 2004, 285, 041-044.		2
98	Breakpoint regions ofETOgene involved in (8; 21) leukemic translocations are enriched in acetylated histone H3. Journal of Cellular Biochemistry, 2013, 114, 2569-2576.	2.6	2
99	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts*. , 2001, 80, 424.		2
100	Intranuclear Organization of the Regulatory Machinery for Vitamin D–Mediated Control of Skeletal Gene Expression. , 2005, , 327-340.		2
101	Immunofluorescence Analysis Using Epitope-Tagged Proteins: In Vitro System. , 2004, 285, 033-036.		1
102	Runx2 Transcription Factor Regulates Heparanase-Induced Bone Resorption in Multiple Myeloma. Blood, 2012, 120, 567-567.	1.4	1
103	Myeloma Cell-Derived Runx2 Promotes Myeloma Progression and Bone-Homing. Blood, 2014, 124, 724-724.	1.4	1
104	Protein–Deoxyribonucleic Acid Interactions Linked to Gene Expression: DNase I Digestion. , 2004, 285, 057-062.		0
105	Protein–Deoxyribonucleic Acid Interactions Linked to Gene Expression: Ligation-Mediated Polymerase Chain Reaction. , 2004, 285, 063-068.		0
106	Analysis of In Vivo Gene Expression Using Epitope-Tagged Proteins. , 2004, 285, 037-040.		0
107	Skeletal Gene Expression in Nuclear Microenvironments. , 2008, , 263-283.		0
108	In Situ Nuclear Organization of Regulatory Machinery. Methods in Molecular Biology, 2008, 455, 239-259.	0.9	0

#	Article	IF	CITATIONS
109	Identification of Potential Enhancers in the RUNX1 Gene. FASEB Journal, 2009, 23, 489.1.	0.5	0
110	Runx2 Deficiency in Osteoblasts Promotes Myeloma Resistance to Bortezomib By Increasing TSP-1-Dependent TGF-β1 Activation in Bone Marrow. Blood, 2021, 138, 1575-1575.	1.4	0