
## Paul J Hogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800612/publications.pdf Version: 2024-02-01



PAUL HOCC

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of impact damage in post-impact compression testing. Composites, 1990, 21, 503-511.                                                                                                | 0.7  | 195       |
| 2  | Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres. Composites Part A: Applied Science and Manufacturing, 2010, 41, 759-767.      | 7.6  | 144       |
| 3  | Mechanical characterisation of glass- and carbon-fibre-reinforced composites made with non-crimp fabrics. Composites Science and Technology, 1997, 57, 1221-1241.                           | 7.8  | 121       |
| 4  | Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete. Composites Part B: Engineering, 2005, 36, 394-404.               | 12.0 | 121       |
| 5  | Composites in Armor. Science, 2006, 314, 1100-1101.                                                                                                                                         | 12.6 | 105       |
| 6  | 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites. Composites Part A: Applied<br>Science and Manufacturing, 2015, 77, 37-49.                                           | 7.6  | 100       |
| 7  | Impact damage tolerance of thermoset composites reinforced with hybrid commingled yarns.<br>Composites Part B: Engineering, 2016, 91, 522-538.                                              | 12.0 | 93        |
| 8  | Interlaminar toughness of interleaved CFRP using non-woven veils: Part 1. Mode-I testing. Composites<br>Part A: Applied Science and Manufacturing, 2011, 42, 1551-1559.                     | 7.6  | 92        |
| 9  | Penetration impact resistance of hybrid composites based on commingled yarn fabrics. Composites<br>Science and Technology, 2003, 63, 467-482.                                               | 7.8  | 88        |
| 10 | The influence of the nonwoven veil architectures on interlaminar fracture toughness of interleaved composites. Composites Science and Technology, 2015, 110, 103-110.                       | 7.8  | 77        |
| 11 | Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites. Applied<br>Composite Materials, 2012, 19, 799-812.                                                       | 2.5  | 76        |
| 12 | Poly (lactic acid) fibre reinforced biodegradable composites. Composites Part B: Engineering, 2014, 62, 104-112.                                                                            | 12.0 | 70        |
| 13 | X-ray computed tomography study of kink bands in unidirectional composites. Composite Structures, 2017, 160, 917-924.                                                                       | 5.8  | 69        |
| 14 | Fire Retardancy of Natural Fibre Reinforced Sheet Moulding Compound. Applied Composite Materials,<br>2007, 14, 251-264.                                                                     | 2.5  | 66        |
| 15 | Toughening of thermosetting composites with thermoplastic fibres. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 412, 97-103. | 5.6  | 65        |
| 16 | Interlaminar toughness of interleaved CFRP using non-woven veils: Part 2. Mode-II testing. Composites<br>Part A: Applied Science and Manufacturing, 2011, 42, 1560-1570.                    | 7.6  | 64        |
| 17 | Carbon-fibre non-crimp fabric laminates for cost-effective damage-tolerant structures. Composites<br>Science and Technology, 1998, 58, 129-143.                                             | 7.8  | 55        |
| 18 | High-temperature damage tolerance of carbon fibre-reinforced plastics. Composites, 1994, 25, 414-424.                                                                                       | 0.7  | 52        |

Paul J Hogg

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Micromechanisms of crack growth in composite materials under corrosive environments. Metal<br>Science, 1980, 14, 441-449.                                                                                        | 0.7  | 47        |
| 20 | A model for the reduction in compression strength of continuous fibre composites after impact damage. Composites, 1993, 24, 333-339.                                                                             | 0.7  | 45        |
| 21 | Effect of fracture toughness properties on the crushing of flat composite plates. Composites Science and Technology, 2006, 66, 2317-2328.                                                                        | 7.8  | 45        |
| 22 | Factors affecting the stress corrosion of GRP in acid environments. Composites, 1983, 14, 254-261.                                                                                                               | 0.7  | 42        |
| 23 | Optimisation of the protrusion geometry in Comeldâ,,¢ joints. Composites Science and Technology, 2011, 71, 868-876.                                                                                              | 7.8  | 38        |
| 24 | Influence of reinforcement architecture on damage mechanisms and residual strength of glass-fibre/epoxy composite systems. Composites Science and Technology, 1998, 58, 803-813.                                 | 7.8  | 37        |
| 25 | The mechanical properties of non-crimped fabric-based composites. Composites, 1993, 24, 423-432.                                                                                                                 | 0.7  | 36        |
| 26 | Healing potential of hybrid materials for structural composites. Composite Structures, 2015, 122, 57-66.                                                                                                         | 5.8  | 36        |
| 27 | A model for predicting the properties of the constituents of a glass fibre rebar reinforced concrete<br>beam at elevated temperatures simulating a fire test. Composites Part B: Engineering, 2005, 36, 384-393. | 12.0 | 35        |
| 28 | High-temperature damage tolerance of carbon fibre-reinforced plastics:. Composites, 1995, 26, 91-102.                                                                                                            | 0.7  | 34        |
| 29 | Stress and strain corrosion of glass-reinforced plastics. Composites, 1981, 12, 166-172.                                                                                                                         | 0.7  | 28        |
| 30 | Investigation of plate geometry on the crushing of flat composite plates. Composites Science and Technology, 2006, 66, 1639-1650.                                                                                | 7.8  | 28        |
| 31 | An AHP and Fuzzy AHP Multifactor Decision Making Approach for Technology and Supplier Selection in the High-Functionality Textile Industry. IEEE Transactions on Engineering Management, 2021, 68, 1112-1125.    | 3.5  | 28        |
| 32 | Bondline toughening of vacuum infused composite repairs. Composites Part A: Applied Science and<br>Manufacturing, 2006, 37, 1239-1251.                                                                           | 7.6  | 25        |
| 33 | Interlaminar fracture toughness of hybrid composites based on commingled yarn fabrics. Composites<br>Science and Technology, 2005, 65, 1547-1563.                                                                | 7.8  | 23        |
| 34 | A model for stress corrosion crack growth in glass reinforced plastics. Composites Science and Technology, 1990, 38, 23-42.                                                                                      | 7.8  | 22        |
| 35 | Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate.<br>Plastics, Rubber and Composites, 2014, 43, 82-88.                                                           | 2.0  | 22        |
| 36 | Impact damage detection and degradation monitoring of wet GFRP composites using noncontact ultrasonics. Polymer Composites, 2009, 30, 1043-1049.                                                                 | 4.6  | 21        |

Paul J Hogg

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hemp fibre as alternative to glass fibre in sheet moulding compound Part 1 – influence of fibre<br>content and surface treatment on mechanical properties. Plastics, Rubber and Composites, 2010, 39,<br>268-276. | 2.0 | 19        |
| 38 | A model for unidirectional composites in longitudinal tension and compression. Composites Science and Technology, 1989, 36, 7-26.                                                                                 | 7.8 | 18        |
| 39 | Finite element analysis of composite T-joints used in wind turbine blades. Plastics, Rubber and<br>Composites, 2015, 44, 87-97.                                                                                   | 2.0 | 18        |
| 40 | GRP in contact with acidic environments—a case study. Composite Structures, 1984, 2, 1-22.                                                                                                                        | 5.8 | 17        |
| 41 | Finite-element-assisted modelling of a thermoplastic pultrusion process for powder-impregnated yarn. Composites Science and Technology, 1998, 58, 1371-1380.                                                      | 7.8 | 13        |
| 42 | The influence of flow-induced anisotropy on the impact behaviour of injection-moulded short-fibre composites. Composites Science and Technology, 1987, 29, 89-102.                                                | 7.8 | 12        |
| 43 | Double cantilever beam Mode-I testing for vacuum infused repairs of GFRP. Journal of Adhesion Science and Technology, 2003, 17, 309-328.                                                                          | 2.6 | 12        |
| 44 | Prediction of the Failure Time of Glass Fiber Reinforced Plastic Reinforced Concrete Beams under Fire Conditions. Journal of Composites for Construction, 2005, 9, 450-457.                                       | 3.2 | 11        |
| 45 | The influence of surface morphology on the interfacial adhesion and fracture behavior of vacuum infused carbon fiber reinforced polymeric repairs. Polymer Composites, 2008, 29, 92-108.                          | 4.6 | 11        |
| 46 | Technology selection in the absence of standardised materials and processes: a survey in the UK composite materials supply chain. Production Planning and Control, 2017, 28, 158-176.                             | 8.8 | 11        |
| 47 | Optimisation of crush energy absorption of non-crimp fabric laminates by through-thickness stitching. Composites Part A: Applied Science and Manufacturing, 2011, 42, 712-722.                                    | 7.6 | 10        |
| 48 | Finite Element Assisted Modelling of the Microscopic Impregnation Process in Thermoplastic<br>Preforms. Applied Composite Materials, 1998, 5, 237-255.                                                            | 2.5 | 8         |
| 49 | Hemp fibre as alternative to glass fibre in sheet moulding compound. Part 2—impact properties.<br>Plastics, Rubber and Composites, 2015, 44, 291-298.                                                             | 2.0 | 7         |
| 50 | Durability of non-crimp fabric composites in aqueous environments. Plastics, Rubber and Composites, 2001, 30, 233-242.                                                                                            | 2.0 | 4         |
| 51 | Low cost ceramic moulding composites: impact properties. Advances in Applied Ceramics, 2004, 103, 158-164.                                                                                                        | 0.4 | 4         |
| 52 | A design process for the adoption of composite materials and supply chain reconfiguration supported by a software tool. Computers and Industrial Engineering, 2018, 121, 62-72.                                   | 6.3 | 4         |
| 53 | THE COMPRESSION PERFORMANCE AND THE ASSOCIATED GLOBAL BUCKLING BEHAVIOR OF A VACUUM-INFUSED REPAIRED COMPOSITE COMPONENT MONITORED BY THE SHADOW MOIRÉ TECHNIQUE. Experimental Techniques, 2008, 32, 39-46.       | 1.5 | 3         |
| 54 | Test conditions in stress wave factor measurements for fibre-reinforced composites and laminates.<br>NDT International, 1988, 21, 3-10.                                                                           | 0.0 | 1         |

PAUL J HOGG

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Carbon, carrots and composites. Materials Technology, 2007, 22, 1-1.                                                                                                                  | 3.0 | 1         |
| 56 | Impact Resistance of Interleaved FRP Using Non-Woven Fabric as Interleaf Materials. Journal of the<br>Japan Society for Composite Materials, 2007, 33, 55-61.                         | 0.2 | 1         |
| 57 | Is There A Future For The Engineering Profession?. Materials Technology, 2001, 16, 8-13.                                                                                              | 3.0 | Ο         |
| 58 | A Strategy For Materials. Materials Technology, 2006, 21, 73-73.                                                                                                                      | 3.0 | 0         |
| 59 | Impact Performance of Macrocomposite Laminates - Evaluation of Energy Absorbed in Non-Penetration<br>Impact Test. Journal of Reinforced Plastics and Composites, 2000, 19, 1363-1378. | 3.1 | Ο         |