Teng Ben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2800510/publications.pdf

Version: 2024-02-01

126907 76900 6,705 71 33 74 citations h-index g-index papers 80 80 80 6625 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie - International Edition, 2009, 48, 9457-9460.	13.8	1,272
2	Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 2017, 117, 1515-1563.	47.7	961
3	Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H ₂ /CO ₂ . Journal of the American Chemical Society, 2016, 138, 7673-7680.	13.7	452
4	Gas storage in porous aromatic frameworks (PAFs). Energy and Environmental Science, 2011, 4, 3991.	30.8	429
5	Porous aromatic frameworks: Synthesis, structure and functions. CrystEngComm, 2013, 15, 17-26.	2.6	241
6	Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy and Environmental Science, 2012, 5, 8370.	30.8	234
7	Ultrahigh iodine adsorption in porous organic frameworks. Journal of Materials Chemistry A, 2014, 2, 7179-7187.	10.3	219
8	Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chemical Communications, 2010, 46, 291-293.	4.1	211
9	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemie - International Edition, 2018, 57, 5345-5349.	13.8	162
10	Synthesis of a porous aromatic framework for adsorbing organic pollutants application. Journal of Materials Chemistry, 2011, 21, 10348.	6.7	138
11	Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal–Organic Framework Thin Film. Angewandte Chemie - International Edition, 2014, 53, 6454-6458.	13.8	119
12	Ultrahigh Gas Storage both at Low and High Pressures in KOH-Activated Carbonized Porous Aromatic Frameworks. Scientific Reports, 2013, 3, 2420.	3.3	117
13	Chiral Recognition and Separation by Chiralityâ€Enriched Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8629-8633.	13.8	116
14	Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries. Chemical Communications, 2013, 49, 4905.	4.1	103
15	Molecular Rotors in Porous Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 1043-1047.	13.8	100
16	High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure. Journal of Physical Chemistry Letters, 2010, 1, 978-981.	4.6	98
17	A double helix of opposite charges to form channels with unique CO ₂ selectivity and dynamics. Chemical Science, 2019, 10, 730-736.	7.4	87
18	Polymerâ€Supported and Freeâ€Standing Metal–Organic Framework Membrane. Chemistry - A European Journal, 2012, 18, 10250-10253.	3.3	86

#	Article	IF	CITATIONS
19	A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Transactions, 2011, 40, 2720-2724.	3.3	77
20	Great Prospects for PAF-1 and its derivatives. Materials Horizons, 2015, 2, 11-21.	12.2	75
21	A 3D Organically Synthesized Porous Carbon Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 11952-11956.	13.8	75
22	Targeted synthesis of an electroactive organic framework. Journal of Materials Chemistry, 2011, 21, 18208.	6.7	68
23	Confined Polymerization in Porous Organic Frameworks with an Ultrahigh Surface Area. Angewandte Chemie - International Edition, 2012, 51, 10136-10140.	13.8	63
24	Two-Dimensional COF–Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H ₂ /CO ₂ Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52899-52907.	8.0	59
25	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H ₂ /CO ₂ separation selectivity. Dalton Transactions, 2018, 47, 7206-7212.	3.3	52
26	Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced Materials, 2020, 32, e2003270.	21.0	52
27	Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 2022, 13, 1701.	12.8	46
28	Computational Design of Porous Organic Frameworks for High-Capacity Hydrogen Storage by Incorporating Lithium Tetrazolide Moieties. Journal of Physical Chemistry Letters, 2010, 1, 2753-2756.	4.6	43
29	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemie, 2018, 130, 5443-5447.	2.0	41
30	Site specific supramolecular heterogeneous catalysis by optically patterned soft oxometalate–porous organic framework (SOM–POF) hybrid on a chip. Journal of Materials Chemistry A, 2015, 3, 1431-1441.	10.3	40
31	Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. Physical Chemistry Chemical Physics, 2014, 16, 12909.	2.8	39
32	Synthesis and Helix Formation of Poly(m-phenylene)s Bearing Optically Active Oligo(ethylene oxide) Side Chains in Protic Media. Macromolecules, 2008, 41, 4506-4509.	4.8	38
33	High Uptake and Fast Transportation of LiPF ₆ in a Porous Aromatic Framework for Solidâ€State Liâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 769-774.	13.8	36
34	Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption, 2012, 18, 375-380.	3.0	33
35	Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures. Chemical Communications, 2014, 50, 6134.	4.1	33
36	Dehydrogenation of Ammonia Borane Confined by Low-Density Porous Aromatic Framework. Journal of Physical Chemistry C, 2012, 116, 25694-25700.	3.1	30

#	Article	IF	CITATIONS
37	Standout electrochemical performance of SnO ₂ and Sn/SnO ₂ nanoparticles embedded in a KOH-activated carbonized porous aromatic framework (PAF-1) matrix as the anode for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18822-18831.	10.3	28
38	Colossal Negative Linear Compressibility in Porous Organic Salts. Journal of the American Chemical Society, 2020, 142, 3593-3599.	13.7	25
39	Double helix formation of poly(m-phenylene)s bearing achiral oligo(ethylene oxide) pendants and transformation into an excess of one-handed single helix through cholate binding in water. Organic and Biomolecular Chemistry, 2009, 7, 2509.	2.8	23
40	Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. New Journal of Chemistry, 2014, 38, 2292.	2.8	23
41	Chiral Recognition and Separation by Chiralityâ€Enriched Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8765-8769.	2.0	21
42	Multifunctional Organosulfonate Anions Self-Assembled with Organic Cations by Charge-Assisted Hydrogen Bonds and the Cooperation of Water. Crystal Growth and Design, 2018, 18, 2082-2092.	3.0	20
43	Impregnated Sulfur in Carbonized Nitrogen-containing Porous Organic Frameworks as Cathode with High Rate Performance and Long Cycle Life for Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2019, 35, 654-661.	2.6	16
44	Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120312.	3.4	15
45	Synthesis and Gas Storage Application of Hierarchically Porous Materials. Macromolecular Chemistry and Physics, 2016, 217, 1995-2003.	2.2	14
46	Switchable molecular sieving of a capped metal organic framework membrane. Journal of Materials Chemistry A, 2020, 8, 19984-19990.	10.3	11
47	Absolute Configuration Determination of a New Chiral Rigid Bisetherketone Macrocycle Containing Binaphthyl and Thioether Moieties by Vibrational Circular Dichroism. Macromolecular Chemistry and Physics, 2005, 206, 1140-1145.	2.2	10
48	A rare 3D lanthanide metal–organic framework with the rutile topology: Synthesis, structure and properties. Journal of Molecular Structure, 2009, 931, 25-30.	3.6	10
49	High Uptake and Fast Transportation of LiPF 6 in a Porous Aromatic Framework for Solidâ€State Liâ€lon Batteries. Angewandte Chemie, 2020, 132, 779-784.	2.0	10
50	Enhanced recognition of a nitrogen containing organic compound by adjusting the acidity of the porous organic frameworks base (JUC-Z2). Journal of Materials Chemistry A, 2015, 3, 2628-2633.	10.3	7
51	Shaping of porous polymers. Polymer, 2020, 207, 122928.	3.8	7
52	Surface polarity estimation of metal-organic frameworks using liquid-phase mixture adsorption. Microporous and Mesoporous Materials, 2017, 251, 129-134.	4.4	6
53	A 3D Organically Synthesized Porous Carbon Material for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 12128-12132.	2.0	5
54	Fabrication of a Novel Covalent Organic Framework Membrane and Its Gas Separation Performance. Acta Chimica Sinica, 2020, 78, 805.	1.4	5

#	Article	IF	Citations
55	Semiconducting and conducting transition of covalent-organic polymers induced by defects. Nanotechnology, 2012, 23, 395702.	2.6	4
56	Electron and proton conducting framework organic salt single crystals. Journal of Solid State Chemistry, 2022, 308, 122903.	2.9	4
57	Design and synthesis of core–shell porous carbon derived from porous polymer as sulfur immobilizers for high-performance lithium–sulfur batteries. Journal of Materials Science, 2022, 57, 5130-5141.	3.7	4
58	LB Film Structure of Nanometer-Scale PEEKK Macrocyclic Oligomers. Macromolecular Rapid Communications, 2002, 23, 196-199.	3.9	3
59	Porous Organic Frameworks-derived Porous Carbons with Outstanding Gas Adsorption Performance. Chemical Research in Chinese Universities, 2018, 34, 338-343.	2.6	3
60	Introduction of H2SO4 and H3PO4 into Crystalline Porous Organic Salts(CPOS-1) for Outstanding Proton Conductivity. Chemical Research in Chinese Universities, 2020, 36, 976-980.	2.6	3
61	Direct realization of an Operando Systems Chemistry Algorithm (OSCAL) for powering nanomotors. Nanoscale, 2021, 13, 3543-3551.	5.6	3
62	Fabrication of Polymer-Supported Metal Organic Framework Membrane and Its Gas Separation Performance. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1901079-0.	4.9	3
63	Preparation of N-doped Porous Carbon from Porous Organic Framework for Gas Sorption. Acta Chimica Sinica, 2015, 73, 605.	1.4	3
64	One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications. Acta Chimica Sinica, 2018, 76, 366.	1.4	3
65	Self-Assembly and Cascade Catalysis by a Soft-Oxometalate (SOM) System. Frontiers in Chemistry, 2020, 8, 601814.	3.6	2
66	Crystalline Porous Organic Salts: Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores (Adv. Mater. 44/2020). Advanced Materials, 2020, 32, 2070331.	21.0	2
67	Carbon Dioxide Capture in Porous Aromatic Frameworks. Green Chemistry and Sustainable Technology, 2014, , 115-142.	0.7	1
68	$R\tilde{A}^{1}\!\!/\!\!4$ cktitelbild: Molecular Rotors in Porous Organic Frameworks (Angew. Chem. 4/2014). Angewandte Chemie, 2014, 126, 1190-1190.	2.0	0
69	$ m R ilde{A}^{1}\!\!/\!a}$ cktitelbild: A 3D Organically Synthesized Porous Carbon Material for Lithium-lon Batteries (Angew.) Tj ETQq1	1.0.78431 2.0	14 rgBT /O\
70	Aligned High Density Semiâ€Conductive Ultraâ€Small Singleâ€Walled Carbon Nanotubes. ChemistrySelect, 2019, 4, 12676-12679.	1.5	0
71	Atomic structure of the continuous random network of amorphous C[(C6H4)2]2 PAF-1. Cell Reports Physical Science, 2022, , 100899.	5.6	O