Sudan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2799939/publications.pdf

Version: 2024-02-01

430442 344852 5,742 36 18 36 h-index citations g-index papers 36 36 36 7164 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell, 2012, 148, 213-227.	13.5	2,056
2	Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α. Cell, 2009, 137, 1100-1111.	13.5	1,882
3	Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20054-20059.	3.3	583
4	Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15438-15443.	3.3	199
5	RIP kinases as modulators of inflammation and immunity. Nature Immunology, 2018, 19, 912-922.	7.0	174
6	Ainsliadimer A selectively inhibits IKKÎ \pm /Î 2 by covalently binding a conserved cysteine. Nature Communications, 2015, 6, 6522.	5 . 8	92
7	Biomarkers for the detection of necroptosis. Cellular and Molecular Life Sciences, 2016, 73, 2177-2181.	2.4	88
8	The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virology Journal, 2016, 13, 77.	1.4	62
9	Discovery of potent necroptosis inhibitors targeting RIPK1 kinase activity for the treatment of inflammatory disorder and cancer metastasis. Cell Death and Disease, 2019, 10, 493.	2.7	62
10	Regulation of RIP3 by the transcription factor Sp1 and the epigenetic regulator UHRF1 modulates cancer cell necroptosis. Cell Death and Disease, 2017, 8, e3084-e3084.	2.7	61
11	Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons. BioMed Research International, 2014, 2014, 1-11.	0.9	58
12	Complex roles of necroptosis in cancer. Journal of Zhejiang University: Science B, 2019, 20, 399-413.	1.3	53
13	In vitro cellular behaviors and toxicity assays of small-sized fluorescent silicon nanoparticles. Nanoscale, 2017, 9, 7602-7611.	2.8	41
14	Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials, 2016, 108, 187-196.	5.7	37
15	Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1. Journal of Virology, 2016, 90, 1088-1095.	1.5	35
16	MicroRNA-381-3p Functions as a Dual Suppressor of Apoptosis and Necroptosis and Promotes Proliferation of Renal Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 290.	1.8	28
17	Discovery of a Potent RIPK3 Inhibitor for the Amelioration of Necroptosis-Associated Inflammatory Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 606119.	1.8	27
18	Modulation of Platelet Activation and Thrombus Formation Using a Pan-PI3K Inhibitor S14161. PLoS ONE, 2014, 9, e102394.	1.1	20

#	Article	IF	CITATIONS
19	Ring closure strategy leads to potent RIPK3 inhibitors. European Journal of Medicinal Chemistry, 2021, 217, 113327.	2.6	17
20	Exploration of the linkage elements of porcupine antagonists led to potent Wnt signaling pathway inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 6855-6868.	1.4	16
21	Antiviral activity of PHA767491 against human herpes simplex virus in vitro and in vivo. BMC Infectious Diseases, 2017, 17, 217.	1.3	16
22	Design, synthesis, and evaluation of novel porcupine inhibitors featuring a fused 3-ring system based on the †reversed†amide scaffold. Bioorganic and Medicinal Chemistry, 2016, 24, 5861-5872.	1.4	15
23	Design, synthesis, and evaluation of potent Wnt signaling inhibitors featuring a fused 3-ring system. European Journal of Medicinal Chemistry, 2016, 108, 154-165.	2.6	14
24	Manipulation of Host Cell Death Pathways by Herpes Simplex Virus. Current Topics in Microbiology and Immunology, 2020, , 85-103.	0.7	14
25	Discovery of a potent hedgehog pathway inhibitor capable of activating caspase8-dependent apoptosis. Journal of Pharmacological Sciences, 2018, 137, 256-264.	1.1	12
26	Antiviral activity of mitoxantrone dihydrochloride against human herpes simplex virus mediated by suppression of the viral immediate early genes. BMC Microbiology, 2019, 19, 274.	1.3	12
27	Doxorubicin sensitizes cancer cells to Smac mimetic via synergistic activation of the CYLD/RIPK1/FADD/caspase-8-dependent apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 441-455.	2.2	12
28	Design, synthesis, and evaluation of pyrrolidine based CXCR4 antagonists with inÂvivo anti-tumor metastatic activity. European Journal of Medicinal Chemistry, 2020, 205, 112537.	2.6	10
29	Design, synthesis, and evaluation of potent RIPK1 inhibitors with inÂvivo anti-inflammatory activity. European Journal of Medicinal Chemistry, 2022, 228, 114036.	2.6	9
30	Discovery and characterization of a potent Wnt and hedgehog signaling pathways dual inhibitor. European Journal of Medicinal Chemistry, 2018, 149, 110-121.	2.6	8
31	Structural optimization of aminopyrimidine-based CXCR4 antagonists. European Journal of Medicinal Chemistry, 2020, 187, 111914.	2.6	8
32	STING-mediated degradation of IFI16 negatively regulates apoptosis by inhibiting p53 phosphorylation at serine 392. Journal of Biological Chemistry, 2021, 297, 100930.	1.6	6
33	Interferonâ€mediated repression of <scp>miR</scp> â€324â€5p potentiates necroptosis to facilitate antiviral defense. EMBO Reports, 2022, 23, .	2.0	6
34	Design, Synthesis, and Characterization of Novel CXCR4 Antagonists Featuring Cyclic Amines. ChemMedChem, 2020, 15, 1150-1162.	1.6	4
35	Design, synthesis, and evaluation of novel CXCR4 antagonists based on an aminoquinoline template. Bioorganic Chemistry, 2020, 99, 103824.	2.0	4
36	Synthesis and characterization of potent RIPK3 inhibitors based on a tricyclic scaffold. Future Medicinal Chemistry, 2022, 14, 421-442.	1.1	1

3