
José JoaquÃ-n Lahoz-Monfort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2799741/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predictive performance of presenceâ€only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 2022, 92, e01486.	2.4	195
2	Assessing the accuracy of densityâ€independent demographic models for predicting species ranges. Ecography, 2021, 44, 345-357.	2.1	4
3	Insectivorous bats are less active near freeways. PLoS ONE, 2021, 16, e0247400.	1.1	3
4	A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation. BioScience, 2021, 71, 1038-1062.	2.2	64
5	Enhancing repository fungal data for biogeographic analyses. Fungal Ecology, 2021, 53, 101097.	0.7	5
6	Modelling species presenceâ€only data with random forests. Ecography, 2021, 44, 1731-1742.	2.1	77
7	Data Integration for Large-Scale Models of Species Distributions. Trends in Ecology and Evolution, 2020, 35, 56-67.	4.2	205
8	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	2.1	397
9	Using Species Distribution Models For Fungi. Fungal Biology Reviews, 2020, 34, 74-88.	1.9	31
10	Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 2020, 43, 549-558.	2.1	186
11	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	3.0	144
12	Identifying technology solutions to bring conservation into the innovation era. Frontiers in Ecology and the Environment, 2019, 17, 591-598.	1.9	13
13	A Call for International Leadership and Coordination to Realize the Potential of Conservation Technology. BioScience, 2019, 69, 823-832.	2.2	21
14	A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 2019, 25, 839-852.	1.9	279
15	Spatially explicit power analysis for detecting occupancy trends for multiple species. Ecological Applications, 2019, 29, e01950.	1.8	23
16	Managing uncertainty in movement knowledge for environmental decisions. Conservation Letters, 2019, 12, e12620.	2.8	6
17	Assessing the impacts of uncertainty in climateâ€change vulnerability assessments. Diversity and Distributions, 2019, 25, 1234-1245.	1.9	7
18	Adaptive management informs conservation and monitoring of Australia's threatened malleefowl. Biological Conservation, 2019, 233, 31-40.	1.9	9

José JoaquÃn Lahoz-Monfo

#	Article	IF	CITATIONS
19	Inferring species richness using multispecies occupancy modeling: Estimation performance and interpretation. Ecology and Evolution, 2019, 9, 780-792.	0.8	50
20	Little evidence of a roadâ€effect zone for nocturnal, flying insects. Ecology and Evolution, 2019, 9, 65-72.	0.8	7
21	Animal movements in fireâ€prone landscapes. Biological Reviews, 2019, 94, 981-998.	4.7	100
22	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19
23	<scp>block</scp> <scp>CV</scp> : An <scp>r</scp> package for generating spatially or environmentally separated folds for <i>k</i> â€fold crossâ€validation of species distribution models. Methods in Ecology and Evolution, 2019, 10, 225-232.	2.2	299
24	Conservation technology: The next generation. Conservation Letters, 2018, 11, e12458.	2.8	51
25	Model averaging in ecology: a review of Bayesian, informationâ€ŧheoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.	2.4	209
26	Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS ONE, 2018, 13, e0203304.	1.1	24
27	Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods in Ecology and Evolution, 2018, 9, 2249-2261.	2.2	52
28	Assessing the vulnerability of freshwater crayfish to climate change. Diversity and Distributions, 2018, 24, 1830-1843.	1.9	27
29	Dealing with falseâ€positive and falseâ€negative errors about species occurrence at multiple levels. Methods in Ecology and Evolution, 2017, 8, 1081-1091.	2.2	105
30	Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?. AStA Advances in Statistical Analysis, 2017, 101, 381-398.	0.4	9
31	Differential use of highway underpasses by bats. Biological Conservation, 2017, 212, 22-28.	1.9	8
32	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	2.1	1,092
33	Bringing It All Together: Multi-species Integrated Population Modelling of a Breeding Community. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 140-160.	0.7	16
34	Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods in Ecology and Evolution, 2017, 8, 1012-1021.	2.2	27
35	Evaluating 318 continentalâ€scale species distribution models over a 60â€year prediction horizon: what factors influence the reliability of predictions?. Global Ecology and Biogeography, 2017, 26, 371-384.	2.7	81
36	Statistical approaches to account for falseâ€positive errors in environmental <scp>DNA</scp> samples. Molecular Ecology Resources, 2016, 16, 673-685.	2.2	158

José JoaquÃn Lahoz-Monfo

#	Article	IF	CITATIONS
37	Adaptive management for improving species conservation across the captive-wild spectrum. Biological Conservation, 2016, 199, 123-131.	1.9	42
38	Deep-sea diversity patterns are shaped by energy availability. Nature, 2016, 533, 393-396.	13.7	202
39	When do we need more data? A primer on calculating the value of information for applied ecologists. Methods in Ecology and Evolution, 2015, 6, 1219-1228.	2.2	146
40	Threatened species impact assessments: survey effort requirements based on criteria for cumulative impacts. Diversity and Distributions, 2015, 21, 620-630.	1.9	7
41	ls my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 2015, 24, 276-292.	2.7	661
42	Guidelines for Using Movement Science to Inform Biodiversity Policy. Environmental Management, 2015, 56, 791-801.	1.2	36
43	Accounting for detectability when surveying for rare or declining reptiles: Turning rocks to find the Grassland Earless Dragon in Australia. Biological Conservation, 2015, 182, 53-62.	1.9	25
44	lgnoring Imperfect Detection in Biological Surveys Is Dangerous: A Response to â€~Fitting and Interpreting Occupancy Models'. PLoS ONE, 2014, 9, e99571.	1.1	142
45	Exploring the consequences of reducing survey effort for detecting individual and temporal variability in survival. Journal of Applied Ecology, 2014, 51, 534-543.	1.9	21
46	Minimizing the Cost of Keeping Options Open for Conservation in a Changing Climate. Conservation Biology, 2014, 28, 646-653.	2.4	16
47	Maxent is not a presence–absence method: a comment on Thibaud <i>etÂal</i> Methods in Ecology and Evolution, 2014, 5, 1192-1197.	2.2	113
48	Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 2014, 23, 504-515.	2.7	215
49	Inter-year differences in survival of Atlantic puffins Fratercula arctica are not associated with winter distribution. Marine Biology, 2013, 160, 2877-2889.	0.7	19
50	Breeding together: modeling synchrony in productivity in a seabird community. Ecology, 2013, 94, 3-10.	1.5	31
51	Analysing and mapping species range dynamics using occupancy models. Journal of Biogeography, 2013, 40, 1463-1474.	1.4	112
52	Designing studies to detect differences in species occupancy: power analysis under imperfect detection. Methods in Ecology and Evolution, 2012, 3, 860-869.	2.2	130
53	A capture–recapture model for exploring multiâ€species synchrony in survival. Methods in Ecology and Evolution, 2011, 2, 116-124.	2.2	63
54	Population Status of a Cryptic Top Predator: An Island-Wide Assessment of Tigers in Sumatran Rainforests. PLoS ONE, 2011, 6, e25931.	1.1	61

#	Article	IF	CITATIONS
55	Satellite imagery as a single source of predictor variables for habitat suitability modelling: how Landsat can inform the conservation of a critically endangered lemur. Journal of Applied Ecology, 2010, 47, 1094-1102.	1.9	40
56	Using occupancy as a state variable for monitoring the Critically Endangered Alaotran gentle lemur Hapalemur alaotrensis. Endangered Species Research, 2010, 11, 157-166.	1.2	65