Jing Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2799191/jing-liu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

253	9,073	55	82
papers	citations	h-index	g-index
279 ext. papers	11,322 ext. citations	6.3 avg, IF	7.05 L-index

#	Paper	IF	Citations
253	Formation of Multiphase Soft Metal from Compositing GaInSn and BiInSn Alloy Systems. <i>ACS Applied Electronic Materials</i> , 2022 , 4, 112-123	4	1
252	Liquid metal hydraulics paradigm: Transmission medium and actuation of bimodal signals. <i>Science China Technological Sciences</i> , 2022 , 65, 77	3.5	1
251	Perspective on gallium-based room temperature liquid metal batteries. <i>Frontiers in Energy</i> , 2022 , 16, 23-48	2.6	1
250	Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features <i>Nature Communications</i> , 2022 , 13, 1397	17.4	5
249	Liquid metal printed electronics towards ubiquitous electrical engineering. <i>Japanese Journal of Applied Physics</i> , 2022 , 61, SE0801	1.4	
248	Endosomal escapable cryo-treatment-driven membrane-encapsulated Ga liquid-metal transformer to facilitate intracellular therapy. <i>Matter</i> , 2021 ,	12.7	6
247	Liquid Metal-Enabled Soft Actuators for Untethered Manipulation. <i>Lecture Notes in Computer Science</i> , 2021 , 412-421	0.9	
246	Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. <i>Applied Materials Today</i> , 2021 , 25, 101236	6.6	5
245	High performance liquid metal thermal interface materials. <i>Nanotechnology</i> , 2021 , 32, 092001	3.4	20
244	Liquid Metal-Enabled Soft Logic Devices. Advanced Intelligent Systems, 2021, 3, 2000246	6	3
243	Pressure sensing of liquid metal-based fiber arrays. AIP Advances, 2021, 11, 035322	1.5	Ο
242	The Design and Manufacturing Process of an Electrolyte-Free Liquid Metal Frequency-Reconfigurable Antenna. <i>Sensors</i> , 2021 , 21,	3.8	7
241	Liquid Metal Foaming via Decomposition Agents. ACS Applied Materials & amp; Interfaces, 2021, 13, 170	1935.ჭ71	031
240	All-in-One ENERGISER design: Smart liquid metal-air battery. <i>Chemical Engineering Journal</i> , 2021 , 409, 128160	14.7	5
239	Cellulose Nanocrystals Facilitate Needle-like Ice Crystal Growth and Modulate Molecular Targeted Ice Crystal Nucleation. <i>Nano Letters</i> , 2021 , 21, 4868-4877	11.5	2
238	Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	10
237	Additive manufacture of low melting point metal porous materials: Capabilities, potential applications and challenges. <i>Materials Today</i> , 2021 , 49, 201-201	21.8	9

(2021-2021)

236	A Liquid Gripper Based on Phase Transitional Metallic Ferrofluid. <i>Advanced Functional Materials</i> , 2021 , 31, 2100274	15.6	19
235	Injectable Affinity and Remote Magnetothermal Effects of Bi-Based Alloy for Long-Term Bone Defect Repair and Analgesia. <i>Advanced Science</i> , 2021 , 8, e2100719	13.6	7
234	A Gravity-Triggered Liquid Metal Patch Antenna with Reconfigurable Frequency. <i>Micromachines</i> , 2021 , 12,	3.3	2
233	Low-melting-point liquid metal convective heat transfer: A review. <i>Applied Thermal Engineering</i> , 2021 , 193, 117021	5.8	13
232	Hydrochromic Visualization of a Keggin-Type Structure Triggered by Metallic Fluids for Liquid Displays, Reversible Writing, and Acidic Environment Detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 36445-36454	9.5	О
231	Design of flexible multi-level topography for enhancing mechanical property. <i>Nano Select</i> , 2021 , 2, 541-	·5 ₃ 48	6
230	Liquid metal technology in solar power generation - Basics and applications. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 222, 110925	6.4	12
229	Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. <i>ACS Applied Materials & Devices</i> (13, 13, 1353-1366)	9.5	37
228	Pervasive liquid metal printed electronics: From concept incubation to industry. <i>IScience</i> , 2021 , 24, 1020) 2 61	10
227	Interfacial Engineering of Room Temperature Liquid Metals. Advanced Materials Interfaces, 2021, 8, 200	14986	10
226	Mussel-Inspired Multifunctional Integrated Liquid Metal-Based Magnetic Suspensions with Rheological, Magnetic, Electrical, and Thermal Reinforcement. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 5256-5265	9.5	6
225	A stomata-inspired superhydrophobic portable filter system RSC Advances, 2021, 11, 18783-18786	3.7	О
224	Extreme Wetting Properties of Liquid Metal 2021 , 195-208		
223	Nano-Biomedicine based on Liquid Metal Particles and Allied Materials. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000086	Ο	9
222	An Integrated Soft Jumping Robotic Module Based on Liquid Metals. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100515	3.5	1
221	Optimal design of micro-topography on natural leaf surface. AIP Advances, 2021, 11, 095019	1.5	Ο
220	EGaIn Fiber Enabled Highly Flexible Supercapacitors. ACS Omega, 2021, 6, 24444-24449	3.9	2
219	Liquid metal bubbles. <i>Applied Materials Today</i> , 2021 , 24, 101151	6.6	2

218	A new hydrodynamic interpretation of liquid metal droplet motion induced by an electrocapillary phenomenon. <i>Soft Matter</i> , 2021 , 17, 7835-7843	3.6	3
217	Paint release control of brush. AIP Advances, 2021, 11, 015115	1.5	
216	Injectable Liquid Metal- and Methotrexate-Loaded Microsphere for Cancer Chemophotothermal Synergistic Therapy <i>ACS Applied Bio Materials</i> , 2020 , 3, 3553-3559	4.1	10
215	Liquid Metal Hybrid Platform-Mediated Ice-Fire Dual Noninvasive Conformable Melanoma Therapy. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 12, 27984-27993	9.5	25
214	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 14667-14675	11.5	29
213	Liquid metal enabled injectable biomedical technologies and applications. <i>Applied Materials Today</i> , 2020 , 20, 100722	6.6	21
212	Liquid Metal Composites. <i>Matter</i> , 2020 , 2, 1446-1480	12.7	122
211	Liquid metal@nabled cybernetic electronics. <i>Materials Today Physics</i> , 2020 , 14, 100245	8	16
210	Semisolid Al-Ga composites fabricated at room temperature for hydrogen generation <i>RSC Advances</i> , 2020 , 10, 10076-10081	3.7	8
209	Cu E GaIn enabled stretchable e-skin for interactive electronics and CT assistant localization. <i>Materials Horizons</i> , 2020 , 7, 1845-1853	14.4	27
208	Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. <i>Applied Materials Today</i> , 2020 , 20, 100738	6.6	9
207	Supermetallophobic Functional Coatings Based on Silicate Clays and a Method To Pattern Liquid Metals. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2229-2241	4	3
206	Shape Control of Lotus Leaf Induced by Surface Submillimeter Texture. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000040	4.6	10
205	Lightweight Liquid Metal Entity. Advanced Functional Materials, 2020 , 30, 1910709	15.6	24
204	Advances in Liquid Metal-Enabled Flexible and Wearable Sensors. <i>Micromachines</i> , 2020 , 11,	3.3	39
203	Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. <i>ACS Applied Materials & District Research (No. 1988)</i> , 12, 6112-6118	9.5	52
202	Instant hydrogen production using Ga-In-Sn-Bi alloy-activated Al-water reaction for hydrogen fuel cells. <i>Journal of Renewable and Sustainable Energy</i> , 2020 , 12, 014701	2.5	9
201	Numerical investigation on integrated thermal management via liquid convection and phase change in packed bed of spherical low melting point metal macrocapsules. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 150, 119366	4.9	7

200	Quantized orbital-chasing liquid metal heterodimers directed by an integrated pilot-wave field. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	4
199	Liquid metal slingshot. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	2
198	Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. <i>Acta Biomaterialia</i> , 2020 , 102, 403	-495 ⁸	18
197	Room temperature liquid metal: its melting point, dominating mechanism and applications. <i>Frontiers in Energy</i> , 2020 , 14, 81-104	2.6	10
196	Study on the nucleating agents for gallium to reduce its supercooling. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 148, 119055	4.9	20
195	Injectable and Radiopaque Liquid Metal/Calcium Alginate Hydrogels for Endovascular Embolization and Tumor Embolotherapy. <i>Small</i> , 2020 , 16, e1903421	11	45
194	Liquid Metal-Based Magnetorheological Fluid with a Large Magnetocaloric Effect. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48748-48755	9.5	2
193	Al-NaOH-Composited Liquid Metal: A Fast-Response Water-Triggered Material with Thermal and Pneumatic Properties. <i>Engineering</i> , 2020 , 6, 1454-1462	9.7	1
192	Fabrication of BilnSn alloy powder via the combination of ultrasonic crushing with dispersants. <i>Powder Technology</i> , 2020 , 373, 614-619	5.2	2
191	A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics. <i>ACS Applied Materials & Electronics</i> , 2020 , 12, 36723-36730	9.5	19
190	Liquid Metal Microparticles Phase Change Medicated Mechanical Destruction for Enhanced Tumor Cryoablation and Dual-Mode Imaging. <i>Advanced Functional Materials</i> , 2020 , 30, 2003359	15.6	27
189	Low-Temperature Triggered Shape Transformation of Liquid Metal Microdroplets. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	12
188	Printed Conformable Liquid Metal e-Skin-Enabled Spatiotemporally Controlled Bioelectromagnetics for Wireless Multisite Tumor Therapy. <i>Advanced Functional Materials</i> , 2019 , 29, 1907063	15.6	52
187	Fabrication of High-Resolution Flexible Circuits and Sensors Based on Liquid Metal Inks by Spraying and Wiping Processing. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2019 , 13, 1545-1551	5.1	11
186	Magnetic Liquid Metal (Fe-EGaIn) Based Multifunctional Electronics for Remote Self-Healing Materials, Degradable Electronics, and Thermal Transfer Printing. <i>Advanced Science</i> , 2019 , 6, 1901478	13.6	91
185	Noncoalescent liquid metal droplets sustained on a magnetic field-circulated liquid metal bath surface. <i>Applied Physics Letters</i> , 2019 , 115, 083702	3.4	2
184	Printed flexible thin-film transistors based on different types of modified liquid metal with good mobility. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	9
183	Novel contrast media based on the liquid metal gallium for in vivo digestive tract radiography: a feasibility study. <i>BioMetals</i> , 2019 , 32, 795-801	3.4	7

Self-Powered Gallium-Based Liquid-Metal Beating Heart. Journal of Physical Chemistry A, 2019, 123, 926& \$2731

181	Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. <i>Nanoscale</i> , 2019 , 11, 2655-2667	7.7	58
180	Electrical control of liquid metal amoeba with directional extension formation <i>RSC Advances</i> , 2019 , 9, 2353-2359	3.7	1
179	Large-Magnitude Transformable Liquid-Metal Composites. ACS Omega, 2019, 4, 2311-2319	3.9	21
178	Semi-Liquid-Metal-(Ni-EGaIn)-Based Ultraconformable Electronic Tattoo. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900183	6.8	57
177	Liquid metal activated hydrogen production from waste aluminum for power supply and its life cycle assessment. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 17505-17514	6.7	18
176	Generalized way to make temperature tunable conductorInsulator transition liquid metal composites in a diverse range. <i>Materials Horizons</i> , 2019 , 6, 1854-1861	14.4	30
175	Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395	16.7	169
174	Intelligent Liquid Integrated Functional Entity: A Basic Way to Innovate Future Advanced Biomimetic Soft Robotics. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900017	6	8
173	NIR laser-responsive liquid metal-loaded polymeric hydrogels for controlled release of doxorubicin <i>RSC Advances</i> , 2019 , 9, 13026-13032	3.7	8
172	Printing of Quasi-2D Semiconducting EGa2O3 in Constructing Electronic Devices via Room-Temperature Liquid Metal Oxide Skin. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 190	00271	25
171	Discoloration Effect and One-Step Synthesis of Hydrogen Tungsten and Molybdenum Bronze (H MO) using Liquid Metal at Room Temperature. <i>ACS Omega</i> , 2019 , 4, 7428-7435	3.9	18
170	Self-fueled liquid metal motors. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 353002	3	11
169	Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: A general method towards fast fabrication of flexible electronics. <i>Science China Materials</i> , 2019 , 62, 982-994	7.1	45
168	Transformable soft liquid metal micro/nanomaterials. <i>Materials Science and Engineering Reports</i> , 2019 , 138, 1-35	30.9	75
167	Multi-Substrate Liquid Metal Circuits Printing via Superhydrophobic Coating and Adhesive Patterning. <i>Advanced Engineering Materials</i> , 2019 , 21, 1801363	3.5	9
166	A Highly Stretchable Liquid Metal Polymer as Reversible Transitional Insulator and Conductor. <i>Advanced Materials</i> , 2019 , 31, e1901337	24	123
165	Spontaneous Dispersion and Large-Scale Deformation of Gallium-Based Liquid Metal Induced by Ferric Ions. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 2439-2447	3.4	8

(2019-2019)

164	Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. <i>Energy Conversion and Management</i> , 2019 , 185, 248-258	10.6	53
163	Magnetic Liquid Metals Manipulated in the Three-Dimensional Free Space. <i>ACS Applied Materials</i> & Samp; Interfaces, 2019 , 11, 8685-8692	9.5	57
162	Soft Robotics: Liquid Metal Based Soft Robotics: Materials, Designs, and Applications (Adv. Mater. Technol. 2/2019). <i>Advanced Materials Technologies</i> , 2019 , 4, 1970009	6.8	35
161	Enhanced adhesion between liquid metal ink and the wetted printer paper for direct writing electronic circuits. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 95, 202-207	5.3	7
160	Controllable dispersion and reunion of liquid metal droplets. Science China Materials, 2019, 62, 407-415	7.1	15
159	Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10331-10337	7.1	34
158	Liquid-Metal-Enhanced Wire Mesh as a Stiffness Variable Material for Making Soft Robotics. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900530	3.5	5
157	Semiliquid Metal Enabled Highly Conductive Wearable Electronics for Smart Fabrics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 30019-30027	9.5	37
156	An Improved Liquid Metal Mask Printing enabled Fast Fabrication of Wearable Electronics on Fabrics. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2019, 2019, 1761-1764	0.9	1
155	Liquid-Metal-Enhanced Wire Mesh as a Stiffness Variable Material for Making Soft Robotics. <i>Advanced Engineering Materials</i> , 2019 , 21, 1970033	3.5	5
154	Liquid Metal Enabled Unconventional Heat and Flow Transfer. ES Energy & Environments, 2019,	2.9	4
153	Liquid Metal Soft Machines. <i>Topics in Mining, Metallurgy and Materials Engineering</i> , 2019 ,	0.4	4
152	Interfacial wetting behaviors of liquid Ga alloys/FeGa3 based on metallic bond interaction. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 569, 102-109	5.1	15
151	Advances in the Development of Liquid Metal-Based Printed Electronic Inks. <i>Frontiers in Materials</i> , 2019 , 6,	4	17
150	Al-assisted high frequency self-powered oscillations of liquid metal droplets. Soft Matter, 2019, 15, 897	138975	5 4
149	Self-encapsulation liquid metal materials for flexible and stretchable electrical conductors <i>RSC Advances</i> , 2019 , 9, 35102-35108	3.7	8
148	Metal-based direct hydrogen generation as unconventional high density energy. <i>Frontiers in Energy</i> , 2019 , 13, 27-53	2.6	9
147	Basic Properties of Liquid Metal and Soft Matter. <i>Topics in Mining, Metallurgy and Materials Engineering</i> , 2019 , 13-35	0.4	2

146	Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. <i>Energy Conversion and Management</i> , 2018 , 160, 467-476	10.6	60
145	Liquid Metal Enabled Flexible Electronic System for Eye Movement Tracking. <i>IEEE Sensors Journal</i> , 2018 , 18, 2592-2598	4	20
144	Metallic Bond-Enabled Wetting Behavior at the Liquid Ga/CuGa Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 9203-9210	9.5	52
143	Effect of Electric Field on the Wetting Behavior of Eutectic GalliumIndium Alloys in Aqueous Environment. <i>Journal of Electronic Materials</i> , 2018 , 47, 2782-2790	1.9	9
142	Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment. <i>Journal of Micromechanics and Microengineering</i> , 2018 , 28, 034003	2	20
141	Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling. <i>Frontiers in Energy</i> , 2018 , 12, 259-275	2.6	25
140	PLUS-M: a Porous Liquid-metal enabled Ubiquitous Soft Material. <i>Materials Horizons</i> , 2018 , 5, 222-229	14.4	72
139	Soft and Moldable Mg-Doped Liquid Metal for Conformable Skin Tumor Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800318	10.1	63
138	Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 92, 17-37	16.2	55
137	Ni-GaIn Amalgams Enabled Rapid and Customizable Fabrication of Wearable and Wireless Healthcare Electronics. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800054	3.5	70
136	Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields. <i>Frontiers in Energy</i> , 2018 , 12, 276-296	2.6	13
135	Colorful liquid metal printed electronics. Science China Technological Sciences, 2018, 61, 110-116	3.5	15
134	Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions. <i>ACS Applied Materials & District &</i>	9.5	34
133	A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. <i>Science China Technological Sciences</i> , 2018 , 61, 1031-1037	3.5	47
132	Liquid Metal Enabled Electrobiology: A New Frontier to Tackle Disease Challenges. <i>Micromachines</i> , 2018 , 9,	3.3	4
131	Preparations and Characterizations of Functional Liquid Metal Materials. <i>Springer Series in Biomaterials Science and Engineering</i> , 2018 , 95-115	0.6	2
130	Multiple Electrohydrodynamic Effects on the Morphology and Running Behavior of Tiny Liquid Metal Motors. <i>Micromachines</i> , 2018 , 9,	3.3	8
129	Liquid-Metal Enabled Droplet Circuits. <i>Micromachines</i> , 2018 , 9,	3.3	7

Liquid Metal Enabled Skin Electronics. Springer Series in Biomaterials Science and Engineering, 2018, 255-328

127	Liquid Metal Printed Biosensor. Springer Series in Biomaterials Science and Engineering, 2018, 325-367	0.6	
126	Advances in Liquid Metal Science and Technology in Chip Cooling and Thermal Management. <i>Advances in Heat Transfer</i> , 2018 , 187-300	1.9	26
125	Stretchable electronics based on Nano-Fe GaIn amalgams for smart flexible pneumatic actuator. <i>Smart Materials and Structures</i> , 2018 , 27, 085022	3.4	15
124	Direct Writing and Repairable Paper Flexible Electronics Using Nickelliquid Metal Ink. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800571	4.6	69
123	Electrically switchable surface waves and bouncing droplets excited on a liquid metal bath. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	9
122	Liquid Metal Biomaterials. Springer Series in Biomaterials Science and Engineering, 2018,	0.6	9
121	Liquid metal bath as conformable soft electrodes for target tissue ablation in radio-frequency ablation therapy. <i>Minimally Invasive Therapy and Allied Technologies</i> , 2018 , 27, 233-241	2.1	8
120	Fluorescent Liquid Metal As a Transformable Biomimetic Chameleon. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1589-1596	9.5	33
119	Preparations, Characteristics and Applications of the Functional Liquid Metal Materials. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700781	3.5	106
118	Nanoparticle-mediated cryosurgery for tumor therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 493-506	6	26
117	Liquid metal spiral coil enabled soft electromagnetic actuator. <i>Science China Technological Sciences</i> , 2018 , 61, 516-521	3.5	42
116	Coloration of Liquid-Metal Soft Robots: From Silver-White to Iridescent. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41627-41636	9.5	26
115	Liquid Metal Based Soft Robotics: Materials, Designs, and Applications. <i>Advanced Materials Technologies</i> , 2018 , 4, 1800549	6.8	61
114	Liquid metal fractals induced by synergistic oxidation. <i>Science Bulletin</i> , 2018 , 63, 1513-1520	10.6	14
113	One-Step Liquid Metal Transfer Printing: Toward Fabrication of Flexible Electronics on Wide Range of Substrates. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800265	6.8	72
112	Thin, Porous, and Conductive Networks of Metal Nanoparticles through Electrochemical Welding on a Liquid Metal Template. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800406	4.6	12
111	Progress, Mechanisms and Applications of Liquid-Metal Catalyst Systems. <i>Chemistry - A European Journal</i> , 2018 , 24, 17616-17626	4.8	40

110	Design and Implementation of a Noncontact Sleep Monitoring System Using Infrared Cameras and Motion Sensor. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2018 , 67, 1555-1563	5.2	34
109	Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. International Materials Reviews, 2017 , 62, 415-440	16.1	81
108	Investigation on the Optimized Binary and Ternary Gallium Alloy as Thermal Interface Materials. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139,	2	10
107	Liquid metal corrosion sculpture to fabricate quickly complex patterns on aluminum. <i>Science China Technological Sciences</i> , 2017 , 60, 65-70	3.5	7
106	Thermally Triggered in Situ Assembly of Gold Nanoparticles for Cancer Multimodal Imaging and Photothermal Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10453-10460	9.5	60
105	A polarized liquid metal worm squeezing across a localized irregular gap. RSC Advances, 2017, 7, 11049-	-1 <u>31</u> , 0 56	22
104	Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter, 2017, 13, 2309-2314	3.6	20
103	3D printing for functional electronics by injection and package of liquid metals into channels of mechanical structures. <i>Materials and Design</i> , 2017 , 122, 80-89	8.1	50
102	Bulk Expansion Effect of Gallium-Based Thermal Interface Material. <i>International Journal of Thermophysics</i> , 2017 , 38, 1	2.1	6
101	Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization. <i>Advanced Science</i> , 2017 , 4, 1700024	13.6	77
100	Surface tension of liquid metal: role, mechanism and application. <i>Frontiers in Energy</i> , 2017 , 11, 535-567	2.6	72
99	Controlled hydrogen generation using interaction of artificial seawater with aluminum plates activated by liquid GaIh alloy. <i>RSC Advances</i> , 2017 , 7, 30839-30844	3.7	24
98	Surface effects of liquid metal amoeba. <i>Science Bulletin</i> , 2017 , 62, 700-706	10.6	14
97	Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. <i>Applied Thermal Engineering</i> , 2017 , 119, 34-41	5.8	48
96	Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. <i>Science China Technological Sciences</i> , 2017 , 60, 306-316	3.5	21
95	Triggering and Tracing Electro-Hydrodynamic Liquid-Metal Surface Convection with a Particle Raft. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700939	4.6	9
94	Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransMixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 35977-35987	9.5	149
93	Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors. <i>Biomaterials</i> , 2017 , 146, 156-167	15.6	64

92	Surfing liquid metal droplet on the same metal bath via electrolyte interface. <i>Applied Physics Letters</i> , 2017 , 111, 101603	3.4	10	
91	Suspension 3D Printing of Liquid Metal into Self-Healing Hydrogel. <i>Advanced Materials Technologies</i> , 2017 , 2, 1700173	6.8	49	
90	Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. <i>Journal of Micromechanics and Microengineering</i> , 2017 , 27, 104	1002	29	
89	Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. <i>Scientific Reports</i> , 2017 , 7, 7256	4.9	22	
88	Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. <i>International Communications in Heat and Mass Transfer</i> , 2017 , 87, 118-124	5.8	59	
87	Gas eruption phenomenon happening from Ga-In alloy in NaOH electrolyte. <i>Applied Physics Letters</i> , 2017 , 111, 241906	3.4	5	
86	Manipulation of Liquid Metals on a Graphite Surface. Advanced Materials, 2016, 28, 9210-9217	24	93	
85	Liquid Metal Machine Triggered Violin-Like Wire Oscillator. <i>Advanced Science</i> , 2016 , 3, 1600212	13.6	34	
84	Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. Journal of Materials Chemistry B, 2016 , 4, 5349-5357	7.3	84	
83	Graphite induced periodical self-actuation of liquid metal. <i>RSC Advances</i> , 2016 , 6, 60729-60735	3.7	13	
82	Comparative study on activation of aluminum with four liquid metals to generate hydrogen in alkaline solution. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 22663-22667	6.7	40	
81	Liquid metal wheeled small vehicle for cargo delivery. <i>RSC Advances</i> , 2016 , 6, 56482-56488	3.7	31	
80	Alternating electric field actuated oscillating behavior of liquid metal and its application. <i>Science China Technological Sciences</i> , 2016 , 59, 597-603	3.5	30	
79	Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. <i>Clinical and Translational Medicine</i> , 2016 , 5, 21	5.7	22	
78	The Rebound Motion of Liquid Metal Droplet on Flexible Micro/Nano Needle Forest. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600008	4.6	8	
77	Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon. <i>Frontiers in Energy</i> , 2016 , 10, 29-36	2.6	6	
76	Dynamic hydrogen generation phenomenon of aluminum fed liquid phase Ga I h alloy inside NaOH electrolyte. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 1453-1459	6.7	40	
75	Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications. <i>Micromachines</i> , 2016 , 7,	3.3	97	

74	Jumping liquid metal droplet in electrolyte triggered by solid metal particles. <i>Applied Physics Letters</i> , 2016 , 108, 223901	3.4	17
73	Electrically induced reorganization phenomena of liquid metal film printed on biological skin. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	3
72	Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. <i>RSC Advances</i> , 2016 , 6, 94692-94698	3.7	21
71	A volatile fluid assisted thermo-pneumatic liquid metal energy harvester. <i>Applied Physics Letters</i> , 2016 , 108, 023903	3.4	14
70	Thermal management of Li-ion battery with liquid metal. <i>Energy Conversion and Management</i> , 2016 , 117, 577-585	10.6	132
69	Numerical investigation of the phase change process of low melting point metal. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 100, 899-907	4.9	59
68	Liquid metal as reconnection agent for peripheral nerve injury. Science Bulletin, 2016, 61, 939-947	10.6	36
67	Metal substrate enhanced hydrogen production of aluminum fed liquid phase Ga I h alloy inside aqueous solution. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 6193-6199	6.7	23
66	Liquid-Metal-Painted Stretchable Capacitor Sensors for Wearable Healthcare Electronics. <i>Journal of Medical and Biological Engineering</i> , 2016 , 36, 265-272	2.2	44
65	Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. <i>Science China Technological Sciences</i> , 2016 , 59, 301-308	3.5	25
64	Self-fueled biomimetic liquid metal mollusk. <i>Advanced Materials</i> , 2015 , 27, 2648-55	24	257
63	Liquid metal spring: oscillating coalescence and ejection of contacting liquid metal droplets. <i>Science Bulletin</i> , 2015 , 60, 648-653	10.6	20
62	Pressured liquid metal screen printing for rapid manufacture of high resolution electronic patterns. <i>RSC Advances</i> , 2015 , 5, 57686-57691	3.7	57
61	Self-Fueled Motors: Self-Fueled Biomimetic Liquid Metal Mollusk (Adv. Mater. 16/2015). <i>Advanced Materials</i> , 2015 , 27, 2550-2550	24	3
60	Autonomous convergence and divergence of the self-powered soft liquid metal vehicles. <i>Science Bulletin</i> , 2015 , 60, 943-951	10.6	29
59	Electromagnetic rotation of a liquid metal sphere or pool within a solution. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150177	2.4	25
58	Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. <i>Science Bulletin</i> , 2015 , 60, 1203-1210	10.6	38
57	Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. <i>Applied Physics Letters</i> , 2015 , 107, 071904	3.4	19

56	Transient State Machines: Transient State Machine Enabled from the Colliding and Coalescence of a Swarm of Autonomously Running Liquid Metal Motors (Small 39/2015). <i>Small</i> , 2015 , 11, 5178-5178	11	2
55	A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future. <i>Engineering</i> , 2015 , 1, 506-512	9.7	8
54	Transient State Machine Enabled from the Colliding and Coalescence of a Swarm of Autonomously Running Liquid Metal Motors. <i>Small</i> , 2015 , 11, 5253-61	11	50
53	Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual-Trans Printing. <i>Advanced Materials</i> , 2015 , 27, 7109-16	24	200
52	Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150297	2.4	29
51	Liquid Metal Ink Enabled Rapid Prototyping of Electrochemical Sensor for Wireless Glucose Detection on the Platform of Mobile Phone. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2015 , 9,	1.3	9
50	Liquid Metal Based Stretchable Radiation-Shielding Film. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2015 , 9,	1.3	10
49	Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. <i>ACS Nano</i> , 2015 , 9, 696-707	16.7	430
48	Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. <i>Scientific Reports</i> , 2014 , 4, 4588	4.9	146
47	Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. <i>Journal of Magnetism and Magnetic Materials</i> , 2014 , 354, 279-283	2.8	40
46	Liquid-solid phase transition alloy as reversible and rapid molding bone cement. <i>Biomaterials</i> , 2014 , 35, 9789-9801	15.6	64
45	Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. <i>Science China Technological Sciences</i> , 2014 , 57, 1721-1728	3.5	62
44	Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 2161-6	5	58
43	Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. <i>Molecular Pharmaceutics</i> , 2014 , 11, 2009-15	5.6	12
42	Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. <i>International Journal of Heat and Fluid Flow</i> , 2014 , 47, 1-8	2.4	17
41	Flexible Mechanical Joint as Human Exoskeleton Using Low-Melting-Point Alloy. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2014 , 8,	1.3	13
40	Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. <i>Scientific Reports</i> , 2014 , 4, 7116	4.9	88
39	Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. <i>Science China Technological Sciences</i> , 2014 , 57, 2089-2095	3.5	43

38	Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2014 , 136,	2	54
37	Electro-hydrodynamic shooting phenomenon of liquid metal stream. <i>Applied Physics Letters</i> , 2014 , 105, 134104	3.4	28
36	Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 5739-5745	7.3	63
35	Channelless Fabrication for Large-Scale Preparation of Room Temperature Liquid Metal Droplets. <i>Advanced Engineering Materials</i> , 2014 , 16, 255-262	3.5	55
34	Diverse transformations of liquid metals between different morphologies. <i>Advanced Materials</i> , 2014 , 26, 6036-42	24	160
33	Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 116, 1091-1097	, 2.6	81
32	Enhanced Thermographic Detection of Skin Cancer Through Combining Laser Scanning and Biodegradable Nanoparticles. <i>Journal of Nanotechnology in Engineering and Medicine</i> , 2013 , 4,		2
31	Keeping Smartphones Cool With Gallium Phase Change Material. <i>Journal of Heat Transfer</i> , 2013 , 135,	1.8	59
30	Nano liquid metal as an emerging functional material in energy management, conversion and storage. <i>Nano Energy</i> , 2013 , 2, 863-872	17.1	58
29	Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 21, 331-346	16.2	172
28	Direct Desktop Printed-Circuits-on-Paper Flexible Electronics. Scientific Reports, 2013, 3,	4.9	232
27	Development of three-dimension microelectrode array for bioelectric measurement using the liquidmetal-micromolding technique. <i>Applied Physics Letters</i> , 2013 , 103, 193701	3.4	12
26	Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Advances, 2013, 3, 11211	7 1.5	79
25	Injectable 3-D fabrication of medical electronics at the target biological tissues. <i>Scientific Reports</i> , 2013 , 3, 3442	4.9	76
24	Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics. <i>PLoS ONE</i> , 2013 , 8, e69761	3.7	43
23	Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. <i>PLoS ONE</i> , 2013 , 8, e58771	3.7	80
22	Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. <i>Frontiers in Energy</i> , 2012 , 6, 311-340	2.6	70
21	Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy. <i>International Journal of Nanomedicine</i> , 2012 , 7, 4715-25	7.3	8

(2005-2012)

20	Gallium-based thermal interface material with high compliance and wettability. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 107, 701-708	2.6	95
19	Printable tiny thermocouple by liquid metal gallium and its matching metal. <i>Applied Physics Letters</i> , 2012 , 101, 073511	3.4	39
18	Heat Spreader Based on Room-Temperature Liquid Metal. <i>Journal of Thermal Science and Engineering Applications</i> , 2012 , 4,	1.9	10
17	Direct writing of flexible electronics through room temperature liquid metal ink. <i>PLoS ONE</i> , 2012 , 7, e4	5 <u>4.8</u> 5	124
16	Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. <i>Frontiers in Energy</i> , 2011 , 5, 20-42	2.6	39
15	Design of Practical Liquid Metal Cooling Device for Heat Dissipation of High Performance CPUs. <i>Journal of Electronic Packaging, Transactions of the ASME</i> , 2010 , 132,	2	41
14	A liquid metal cooling system for the thermal management of high power LEDs. <i>International Communications in Heat and Mass Transfer</i> , 2010 , 37, 788-791	5.8	112
13	Nano-cryosurgery: advances and challenges. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4521	-423	27
12	Injectable liquid alkali alloy based-tumor thermal ablation therapy. <i>Minimally Invasive Therapy and Allied Technologies</i> , 2009 , 18, 30-5	2.1	16
11	Harvesting human kinematical energy based on liquid metal magnetohydrodynamics. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 1305-1309	2.3	30
10	Characterization of the nanocryosurgical freezing process through modifying Mazur model. <i>Journal of Applied Physics</i> , 2008 , 103, 084311	2.5	3
9	Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2008 , 4, 79-87	6	46
8	Nano liquid-metal fluid as ultimate coolant. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2007 , 361, 252-256	2.3	122
7	Liquid metal cooling in thermal management of computer chips. <i>Frontiers of Energy and Power Engineering in China</i> , 2007 , 1, 384-402		108
6	Heat-driven liquid metal cooling device for the thermal management of a computer chip. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 4722-4729	3	98
5	A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung Im Ingenieurwesen/Engineering Research, 2006, 70, 243-251	0.8	41
4	Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. <i>Cryobiology</i> , 2005 , 50, 183-92	2.7	57
3	Selective freezing of target biological tissues after injection of solutions with specific thermal properties. <i>Cryobiology</i> , 2005 , 50, 174-82	2.7	35

2	Patterned Displays. <i>Advanced Materials Technologies</i> ,2101010	6.8	3
ι	Low Melting Point Alloys Enabled Stiffness Tunable Advanced Materials. <i>Advanced Functional Materials</i> , 2201942	15.6	3