
Dariusz Kuc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2799158/publications.pdf Version: 2024-02-01

DADILISZ KUC

#	Article	IF	CITATIONS
1	Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn. Journal of Magnesium and Alloys, 2021, 9, 467-477.	11.9	34
2	Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo). Journal of Magnesium and Alloys, 2022, 10, 811-820.	11.9	21
3	Refinement effect of RE in light weight Mg–Li–Al alloys. Journal of Thermal Analysis and Calorimetry, 2018, 134, 333-341.	3.6	19
4	Structural and mechanical properties of laboratory rolled steels high-alloyed with manganese and aluminium. Archives of Civil and Mechanical Engineering, 2012, 12, 312-317.	3.8	17
5	Activation Energy in Hot Forming and Recrystallization Models for Magnesium Alloy AZ31. Journal of Materials Engineering and Performance, 2013, 22, 890-897.	2.5	15
6	Effect of Various SPD Techniques on Structure and Superplastic Deformation of Two Phase MgLiAl Alloy. Metals and Materials International, 2018, 24, 1077-1089.	3.4	13
7	Influence of deformation parameters and initial grain size on the microstructure of austenitic steels after hot-working processes. Materials Characterization, 2006, 56, 318-324.	4.4	12
8	Analysis of the precipitation process of the intermetallic phases in a high-temperature Fe–Ni austenitic alloy. Materials Chemistry and Physics, 2003, 81, 490-492.	4.0	11
9	Structure and plasticity in hot deformed FeAl intermetallic phase base alloy. Materials Characterization, 2009, 60, 1185-1189.	4.4	10
10	Impact of the Morphology of Micro- and Nanosized Powder Mixtures on the Microstructure of Mg-Mg2Si-CNT Composite Sinters. Materials, 2019, 12, 3242.	2.9	10
11	The Influence of Microstructure on Corrosion Resistance of Mg-3Al-1Zn-15Li (LAZ1531) Alloy. Journal of Materials Engineering and Performance, 2020, 29, 2679-2686.	2.5	10
12	A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sintering. Journal of Magnesium and Alloys, 2022, 10, 3553-3564.	11.9	10
13	Effect of Magnesium Matrix Grain Refinement Induced by Plastic Deformation in a Composite with Short Carbon Fibers. Metals, 2019, 9, 724.	2.3	6
14	Subgrain and dislocation structure changes in hot-deformed high-temperature Fe–Ni austenitic alloy. Materials Chemistry and Physics, 2003, 81, 493-495.	4.0	5
15	Complex Flow Stress Model for a Magnesium Alloy AZ31 at Hot Forming. High Temperature Materials and Processes, 2011, 30, .	1.4	5
16	Plasticity and Microstructure of Hot Deformed Magnesium Alloy AZ61. Solid State Phenomena, 2012, 191, 101-108.	0.3	5
17	Superplastic Deformation of Al–Cu Alloys after Grain Refinement by Extrusion Combined with Reversible Torsion. Materials, 2020, 13, 5803.	2.9	5
18	SUPERPLASTIC DEFORMATION OF TWO PHASE MgLiAl ALLOYï€ AFTER TCAP PRESSING. Acta Metallurgica Slovaca, 2017, 23, 215-221.	0.7	5

DARIUSZ KUC

#	Article	IF	CITATIONS
19	The Effect of Extrusion Ratio on the Corrosion Resistance of Ultrafine-Grained Mg-4Li-3Al-Zn Alloy Deformed Using Extrusion with a Forward-Backward Oscillating Die. Journal of Materials Engineering and Performance, 2022, 31, 8932-8939.	2.5	5
20	Evolution of microstructure dependent corrosion properties of ultrafine AZ31 under conditions of extrusion with a forward backward oscillating die. Journal of Materials Research and Technology, 2022, 18, 4486-4496.	5.8	4
21	Multiscale CAFE Modelling of Dynamic Recrystallization. Materials Science Forum, 2010, 638-642, 2567-2572.	0.3	3
22	Influence of Deformation Parameters on the Structure in Selected Intermetallic from Al-Fe Diagram. Solid State Phenomena, 2013, 212, 63-66.	0.3	3
23	Plasticity and Microstructure of Magnesium - Lithium Alloys. Solid State Phenomena, 2013, 212, 11-14.	0.3	3
24	The Influence of the Deformation Method on the Microstructure and Properties of Magnesium Alloy Mg-Y-RE-Zr. Materials, 2022, 15, 2017.	2.9	3
25	Effect of Magnesium Powder Application on the Microstructure and Properties of Rods Extruded by the Forward-Backward Rotating Die Extrusion Method. Materials, 2022, 15, 4094.	2.9	3
26	The impact of compression with oscillatory torsion on the structure change in copper. Archives of Civil and Mechanical Engineering, 2007, 7, 39-46.	3.8	2
27	Forming Construction Elements for Aviation from Light Alloys with the Use of Cold Extrusion in Complex State of Strain. Solid State Phenomena, 0, 246, 240-243.	0.3	2
28	Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata. , 2011, , .		1
29	Model of Microstructure Development in Hot Deformed Magnesium Alloy AZ31 Type. Solid State Phenomena, 0, 197, 232-237.	0.3	1
30	Influence of the Thermo-Mechanical Treatment on the Properties and Microstructure of High Manganese Austenitic-Ferritic Steel. Solid State Phenomena, 2015, 226, 75-78.	0.3	1
31	The Microstructure and Mechanical Properties of Cylindrical Elements from Steel 38Mn6 after Continuous Induction Heating. Archives of Metallurgy and Materials, 2016, 61, 1969-1974.	0.6	1
32	The Influence of Deformation Conditions on Structure of Fe-Al Intermetallic Phase ‒ Based Alloys. Materials Science Forum, 2010, 638-642, 1362-1367.	0.3	0
33	The Studies of Texture in Cold Rolled and Annealed Sheets of Mn-Al Steel. Solid State Phenomena, 2013, 203-204, 38-41.	0.3	0
34	Microstructure and Mechanical Properties of High Manganese TWIP Steel after Thermo-Forming Processes. Solid State Phenomena, 2015, 226, 99-102.	0.3	0