
Silke Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2799004/publications.pdf Version: 2024-02-01

SILVE RALLED

#	Article	IF	CITATIONS
1	Meteorological Data Policies Needed to Support Biodiversity Monitoring with Weather Radar. Bulletin of the American Meteorological Society, 2022, 103, E1234-E1242.	3.3	1
2	Short- and long-distance avian migrants differ in exercise endurance but not aerobic capacity. BMC Zoology, 2022, 7, .	1.0	2
3	Climatic drivers of (changes in) bat migration phenology at Bracken Cave (USA). Global Change Biology, 2021, 27, 768-780.	9.5	8
4	Effects of blood parasite infections on spatiotemporal migration patterns and activity budgets in a longâ€distance migratory passerine. Ecology and Evolution, 2021, 11, 753-762.	1.9	14
5	The Indoâ€European flyway: Opportunities and constraints reflected by Common Rosefinches breeding across Europe. Journal of Biogeography, 2021, 48, 1255-1266.	3.0	16
6	Weather radars' role in biodiversity monitoring. Science, 2021, 372, 248-248.	12.6	9
7	A Gaussian Mixture Model to Separate Birds and Insects in Single-Polarization Weather Radar Data. Remote Sensing, 2021, 13, 1989.	4.0	5
8	Quantifying year-round nocturnal bird migration with a fluid dynamics model. Journal of the Royal Society Interface, 2021, 18, 20210194.	3.4	7
9	Lightâ€level geolocator analyses: A user's guide. Journal of Animal Ecology, 2020, 89, 221-236.	2.8	113
10	Environmental variability, reliability of information and the timing of migration. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200622.	2.6	22
11	Broadâ€scale patterns of the Afroâ€Palaearctic landbird migration. Global Ecology and Biogeography, 2020, 29, 722-735.	5.8	49
12	A Geostatistical Approach to Estimate High Resolution Nocturnal Bird Migration Densities from a Weather Radar Network. Remote Sensing, 2019, 11, 2233.	4.0	16
13	Taking radar aeroecology into the 21st century. Ecography, 2019, 42, 847-851.	4.5	11
14	Moult-related reduction of aerobic scope in passerine birds. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 463-470.	1.5	9
15	A full annual perspective on sex-biased migration timing in long-distance migratory birds. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182821.	2.6	52
16	Revealing patterns of nocturnal migration using the European weather radar network. Ecography, 2019, 42, 876-886.	4.5	72
17	The grand challenges of migration ecology that radar aeroecology can help answer. Ecography, 2019, 42, 861-875.	4.5	61
18	Shooting may aggravate rather than alleviate conflicts between migratory geese and agriculture. Journal of Applied Ecology, 2018, 55, 2653-2662.	4.0	12

SILKE BAUER

#	Article	IF	CITATIONS
19	Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172307.	2.6	30
20	Inherent limits of light-level geolocation may lead to over-interpretation. Current Biology, 2018, 28, R99-R100.	3.9	27
21	Identifying drivers of breeding success in a longâ€distance migrant using structural equation modelling. Oikos, 2018, 127, 125-133.	2.7	11
22	Migratory connectivity in the context of differential migration. Biology Letters, 2018, 14, 20180679.	2.3	26
23	Miniaturized multi-sensor loggers provide new insight into year-round flight behaviour of small trans-Sahara avian migrants. Movement Ecology, 2018, 6, 19.	2.8	45
24	Host migration strategy and blood parasite infections of three sparrow species sympatrically breeding in Southeast Europe. Parasitology Research, 2018, 117, 3733-3741.	1.6	17
25	Spatiotemporal Group Dynamics in a Long-Distance Migratory Bird. Current Biology, 2018, 28, 2824-2830.e3.	3.9	31
26	Blood parasites prevalence of migrating passerines increases over the spring passage period. Journal of Zoology, 2018, 306, 23-27.	1.7	15
27	Diverse migration strategies in hoopoes (Upupa epops) lead to weak spatial but strong temporal connectivity. Die Naturwissenschaften, 2018, 105, 42.	1.6	12
28	Dependencies in the timing of activities weaken over the annual cycle in a long-distance migratory bird. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	29
29	Potential for an Arcticâ€breeding migratory bird to adjust spring migration phenology to Arctic amplification. Global Change Biology, 2017, 23, 4058-4067.	9.5	41
30	From Agricultural Benefits to Aviation Safety: Realizing the Potential of Continent-Wide Radar Networks. BioScience, 2017, 67, 912-918.	4.9	64
31	Timing is crucial for consequences of migratory connectivity. Oikos, 2016, 125, 605-612.	2.7	83
32	Repeatability of individual migration routes, wintering sites, and timing in a longâ€distance migrant bird. Ecology and Evolution, 2016, 6, 8679-8685.	1.9	45
33	A chain is as strong as its weakest link: assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu, 2016, 116, 199-207.	0.6	32
34	Shifts in vegetation phenology along flyways entail varying risks of mistiming in a migratory songbird. Ecosphere, 2016, 7, e01385.	2.2	12
35	No detectable effects of lightweight geolocators on a Palaearctic-African long-distance migrant. Journal of Ornithology, 2016, 157, 255-264.	1.1	20
36	Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. Journal of Animal Ecology, 2015, 84, 272-283.	2.8	93

SILKE BAUER

#	Article	IF	CITATIONS
37	Continental-scale radar monitoring of the aerial movements of animals. Movement Ecology, 2014, 2, .	2.8	67
38	Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide. Science, 2014, 344, 1242552.	12.6	586
39	Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC Ecology, 2014, 14, 9.	3.0	30
40	Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics. Movement Ecology, 2013, 1, 6.	2.8	169
41	Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. Journal of Animal Ecology, 2013, 82, 804-813.	2.8	57
42	Mechanistic models of animal migration behaviour – their diversity, structure and use. Journal of Animal Ecology, 2013, 82, 498-508.	2.8	71
43	Cues and the optimal timing of activities under environmental changes. Ecology Letters, 2011, 14, 1183-1190.	6.4	125
44	Cues and decision rules in animal migration. , 2011, , 68-87.		63
45	Many routes lead to Rome: potential causes for the multiâ€route migration system of Red Knots, <i>Calidris canutus islandica</i> . Ecology, 2010, 91, 1822-1831.	3.2	23
46	Predation Danger Can Explain Changes in Timing of Migration: The Case of the Barnacle Goose. PLoS ONE, 2010, 5, e11369.	2.5	53
47	What decision rules might pink-footed geese use to depart on migration? An individual-based model. Behavioral Ecology, 2009, 20, 560-569.	2.2	78
48	The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos, 2009, 118, 624-626.	2.7	192
49	How to find natural reservoir hosts from endemic prevalence in a multi-host population: A case study of influenza in waterfowl. Epidemics, 2009, 1, 118-128.	3.0	36
50	The natural link between Europe and Africa - 2.1 billion birds on migration. Oikos, 2009, 118, 624-626.	2.7	8
51	Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds. Freshwater Biology, 2008, 53, 181-193.	2.4	36
52	Dominance in feeding territories relates to foraging success and offspring growth in brown skuas Catharacta antarctica lonnbergi. Behavioral Ecology and Sociobiology, 2008, 62, 1149-1157.	1.4	19
53	The consequences of climateâ€driven stopâ€over sites changes on migration schedules and fitness of Arctic geese. Journal of Animal Ecology, 2008, 77, 654-660.	2.8	81
54	Optimal management of a goose flyway: migrant management at minimum cost. Journal of Applied Ecology, 2008, 45, 1446-1452.	4.0	43

SILKE BAUER

#	Article	IF	CITATIONS
55	THE RELEVANCE OF ENVIRONMENTAL CONDITIONS FOR DEPARTURE DECISION CHANGES EN ROUTE IN MIGRATING GEESE. Ecology, 2008, 89, 1953-1960.	3.2	99
56	Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biology, 2007, 52, 2421-2433.	2.4	84
57	Optimal movement between patches under incomplete information about the spatial distribution of food items. Theoretical Population Biology, 2006, 70, 452-463.	1.1	41
58	Modelling behavioural and fitness consequences of disturbance for geese along their spring flyway. Journal of Applied Ecology, 2005, 43, 92-100.	4.0	82
59	Sexual harassment in heterogeneous landscapes can mediate population regulation in a grasshopper. Behavioral Ecology, 2005, 16, 239-246.	2.2	21
60	Skuas at penguin carcass: patch use and state-dependent leaving decisions in a top-predator. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1449-1454.	2.6	8
61	Asymmetric competition as a natural outcome of neighbour interactions among plants: results from the field-of-neighbourhood modelling approach. Plant Ecology, 2004, 170, 135-145.	1.6	57
62	Cyclic dynamics in simulated plant populations. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2443-2450.	2.6	27