
Lydia ScarfÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2798970/publications.pdf Version: 2024-02-01

Ινοιλ ScadeÃ2

#	Article	IF	CITATIONS
1	Six-month antibody persistence after BNT162b2 mRNA COVID-19 vaccination in patients with chronic lymphocytic leukemia. Blood Advances, 2022, 6, 148-151.	5.2	15
2	Are we finally getting personal? Moving towards a personalized approach in chronic lymphocytic leukemia. Seminars in Cancer Biology, 2022, 84, 329-338.	9.6	4
3	Lenalidomide enhances CD23.CAR T cell therapy in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2022, 63, 1566-1579.	1.3	11
4	Clonal haematopoiesis as a risk factor for therapyâ€related myeloid neoplasms in patients with chronic lymphocytic leukaemia treated with chemoâ€(immuno)therapy. British Journal of Haematology, 2022, 198, 103-113.	2.5	7
5	Old and New Drugs for Chronic Lymphocytic Leukemia: Lights and Shadows of Real-World Evidence. Journal of Clinical Medicine, 2022, 11, 2076.	2.4	6
6	Continuous treatment with Ibrutinib in 100 untreated patients with <i>TP</i> 53 disrupted chronic lymphocytic leukemia: A realâ€life campus CLL study. American Journal of Hematology, 2022, 97, .	4.1	14
7	High surface IgM levels associate with shorter response to ibrutinib and BTK bypass in patients with CLL. Blood Advances, 2022, 6, 5494-5504.	5.2	3
8	Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents. Haematologica, 2021, 106, 2334-2344.	3.5	18
9	Infrequent "chronic lymphocytic leukemia-specific―immunoglobulin stereotypes in aged individuals with or without low-count monoclonal B-cell lymphocytosis. Haematologica, 2021, 106, 1178-1181.	3.5	8
10	Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.	1.4	72
11	Response assessment to venetoclax in relapsed/refractory chronic lymphocytic leukemia by ultrasonography. Leukemia Research, 2021, 100, 106488.	0.8	3
12	Exploiting B-cell Receptor Stereotypy to Design Tailored Immunotherapy in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2021, 27, 729-739.	7.0	5
13	Acalabrutinib: a highly selective, potent Bruton tyrosine kinase inhibitor for the treatment of chronic lymphocytic leukemia. Leukemia and Lymphoma, 2021, 62, 1066-1076.	1.3	3
14	Assessing Patients' Knowledge on Chronic Lymphocytic Leukemia: Validation of the ERIC CLL Knowledge Questionnaire in Greece. HemaSphere, 2021, 5, e546.	2.7	0
15	A single-tube multiplex method for monitoring mutations in cysteine 481 of Bruton Tyrosine Kinase (BTK) gene in chronic lymphocytic leukemia patients treated with ibrutinib. Leukemia and Lymphoma, 2021, 62, 2018-2021.	1.3	2
16	Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood, 2021, 137, 3165-3173.	1.4	539
17	MyPal-Child study protocol: an observational prospective clinical feasibility study of the MyPal ePRO-based early palliative care digital system in paediatric oncology patients. BMJ Open, 2021, 11, e045226.	1.9	9
18	3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Frontiers in Immunology, 2021, 12, 639572.	4.8	26

Lydia Scarfò

#	Article	IF	CITATIONS
19	Preexisting and treatment-emergent autoimmune cytopenias in patients with CLL treated with targeted drugs. Blood, 2021, 137, 3507-3517.	1.4	30
20	3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 655773.	3.7	3
21	MyPal ADULT study protocol: a randomised clinical trial of the MyPal ePRO-based early palliative care system in adult patients with haematological malignancies. BMJ Open, 2021, 11, e050256.	1.9	8
22	Fostering Palliative Care Through Digital Intervention: A Platform for Adult Patients With Hematologic Malignancies. Frontiers in Digital Health, 2021, 3, 730722.	2.8	4
23	A First-in-human Study of Tenalisib (RP6530), a Dual PI3K Î′/γ Inhibitor, in Patients With Relapsed/Refractory Hematologic Malignancies: Results From the European Study. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, 78-86.	0.4	19
24	Chronic lymphocytic leukemia management in Italy during the COVID-19 pandemic: a Campus CLL report. Blood, 2020, 136, 763-766.	1.4	33
25	COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia, 2020, 34, 2354-2363.	7.2	198
26	T-Cell Dynamics in Chronic Lymphocytic Leukemia under Different Treatment Modalities. Clinical Cancer Research, 2020, 26, 4958-4969.	7.0	18
27	Frontline treatment with the combination obinutuzumab ± chlorambucil for chronic lymphocytic leukemia outside clinical trials: Results of a multinational, multicenter study by ERIC and the Israeli CLL study group. American Journal of Hematology, 2020, 95, 604-611.	4.1	12
28	Interleukinâ€1 receptorâ€associated kinase 4 inhibitor interrupts tollâ€like receptor signalling and sensitizes chronic lymphocytic leukaemia cells to apoptosis. British Journal of Haematology, 2020, 189, 475-488.	2.5	13
29	High-throughput analysis of the T cell receptor gene repertoire in low-count monoclonal B cell lymphocytosis reveals a distinct profile from chronic lymphocytic leukemia. Haematologica, 2020, 105, e515.	3.5	3
30	EHA evaluation of the ESMO—Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS v1.1) for haematological malignancies. ESMO Open, 2020, 5, e000611.	4.5	10
31	Clonal Hematopoiesis Is Associated with Increased Risk for Therapy-Related Myeloid Neoplasms in Chronic Lymphocytic Leukemia Patients Treated with Chemo(immuno)Therapy. Blood, 2020, 136, 19-20.	1.4	1
32	Efficacy and Safety of Front-Line Venetoclax and Rituximab (VenR) for the Treatment of Young Patients with Chronic Lymphocytic Leukemia and an Unfavorable Biologic Profile. Preliminary Results of the Gimema Study 'Veritas'. Blood, 2020, 136, 47-49.	1.4	1
33	Mutations of the <i>Exportin 1 (XPO1)</i> Gene Predict Shorter Time to First Treatment in 1092 Early Stage Chronic Lymphocytic Leukemia Patients. I Training/Validation Study. Blood, 2020, 136, 31-32.	1.4	1
34	Minimal Residual Disease-Driven Treatment Intensification By Sequential Addition of Ibrutinib to Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: Results of the Monotherapy and Combination Phases of the Improve Study. Blood, 2020, 136, 21-22.	1.4	4
35	Venetoclax in CLL patients who progress after Bâ€cell Receptor inhibitor treatment: a retrospective multiâ€centre Italian experience. British Journal of Haematology, 2019, 187, e8-e11.	2.5	14
36	Trabectedin Reveals a Strategy of Immunomodulation in Chronic Lymphocytic Leukemia. Cancer Immunology Research, 2019, 7, 2036-2051.	3.4	39

Lydia Scarfò

#	Article	IF	CITATIONS
37	Chronic Lymphocytic Leukemia: Who, How, and Where?. Hematologic Malignancies, 2019, , 3-17.	0.2	2
38	Olaptesed pegol (NOX-A12) with bendamustine and rituximab: a phase IIa study in patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica, 2019, 104, 2053-2060.	3.5	60
39	Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control. Scientific Reports, 2019, 9, 4155.	3.3	4
40	The evolving treatment landscape of chronic lymphocytic leukemia. Current Opinion in Oncology, 2019, 31, 568-573.	2.4	15
41	Relevance of Minimal Residual Disease in the Era of Targeted Agents. Cancer Journal (Sudbury, Mass), 2019, 25, 410-417.	2.0	8
42	Dichotomous Toll-like receptor responses in chronic lymphocytic leukemia patients under ibrutinib treatment. Leukemia, 2019, 33, 1030-1051.	7.2	4
43	Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica, 2019, 104, 360-369.	3.5	42
44	BTK Leu528Trp - a Potential Secondary Resistance Mechanism Specific for Patients with Chronic Lymphocytic Leukemia Treated with the Next Generation BTK Inhibitor Zanubrutinib. Blood, 2019, 134, 170-170.	1.4	33
45	Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica, 2018, 103, 865-873.	3.5	47
46	No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica, 2018, 103, e158-e161.	3.5	16
47	A retinoic acid-dependent stroma-leukemia crosstalk promotes chronic lymphocytic leukemia progression. Nature Communications, 2018, 9, 1787.	12.8	22
48	Monoclonal B-cell lymphocytosis: Does the elderly patient need a specialistic approach?. European Journal of Internal Medicine, 2018, 58, 2-6.	2.2	4
49	A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget, 2018, 9, 26019-26031.	1.8	8
50	Lenalidomide maintenance in patients with relapsed diffuse large B-cell lymphoma who are not eligible for autologous stem cell transplantation: an open label, single-arm, multicentre phase 2 trial. Lancet Haematology,the, 2017, 4, e137-e146.	4.6	28
51	Efficacy and safety of dinaciclib vs ofatumumab in patients with relapsed/refractory chronic lymphocytic leukemia. Blood, 2017, 129, 1876-1878.	1.4	63
52	Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood, 2017, 129, 3440-3451.	1.4	56
53	Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 15746.	12.8	93
54	Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clinical Cancer Research, 2017, 23, 5292-5301.	7.0	27

Lydia ScarfÃ²

#	Article	IF	CITATIONS
55	The inhibitory receptor toll interleukin-1R 8 (TIR8/IL-1R8/SIGIRR) is downregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2017, 58, 2419-2425.	1.3	9
56	Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia. Haematologica, 2017, 102, e394-e396.	3.5	10
57	Toll-like receptor 9 stimulation can induce lκBζ expression and IgM secretion in chronic lymphocytic leukemia cells. Haematologica, 2017, 102, 1901-1912.	3.5	18
58	Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget, 2017, 8, 11219-11227.	1.8	21
59	Chronic lymphocytic leukaemia. Critical Reviews in Oncology/Hematology, 2016, 104, 169-182.	4.4	126
60	Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica, 2016, 101, 959-967.	3.5	57
61	What does it mean I have a monoclonal B-cell lymphocytosis?: Recent insights and new challenges. Seminars in Oncology, 2016, 43, 201-208.	2.2	18
62	HIF- $1\hat{l}\pm$ regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood, 2016, 127, 1987-1997.	1.4	52
63	Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Reports, 2016, 14, 1748-1760.	6.4	90
64	Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on Major Stereotyped Subsets and Closely Related Satellites. Blood, 2016, 128, 4376-4376.	1.4	1
65	Analysis of the Early Clonal Dynamics in Ibrutinib-Treated Chronic Lymphocytic Leukemia. Blood, 2016, 128, 4367-4367.	1.4	Ο
66	Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood, 2015, 125, 856-859.	1.4	70
67	Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood, 2015, 126, 1043-1044.	1.4	32
68	A phase II multi-center trial of pentostatin plus cyclophosphamide with ofatumumab in older previously untreated chronic lymphocytic leukemia patients. Haematologica, 2015, 100, e501-e504.	3.5	22
69	Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS ONE, 2015, 10, e0130195.	2.5	8
70	AEGLE: A big bio-data analytics framework for integrated health-care services. , 2015, , .		4
71	Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation. Haematologica, 2015, 100, 1460-1468.	3.5	19
72	Riskâ€ŧailored <scp>CNS</scp> prophylaxis in a monoâ€institutional series of 200 patients with diffuse large Bâ€cell lymphoma treated in the rituximab era. British Journal of Haematology, 2015, 168, 654-662.	2.5	90

LYDIA SCARFÃ²

#	Article	IF	CITATIONS
73	Clinical Features, Management, and Prognosis of an International Series of 161 Patients With Limited-Stage Diffuse Large B-Cell Lymphoma of the Bone (the IELSG-14 Study). Oncologist, 2014, 19, 291-298.	3.7	70
74	Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international extranodal lymphoma study group (the <scp>IELSG</scp> 14 study). British Journal of Haematology, 2014, 164, 834-840.	2.5	54
75	Monoclonal B cell lymphocytosis and "in situ―lymphoma. Seminars in Cancer Biology, 2014, 24, 3-14.	9.6	37
76	Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematology,the, 2014, 1, e74-e84.	4.6	93
77	The frequency of <i><scp>TP</scp>53</i> gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. British Journal of Haematology, 2014, 166, 621-625.	2.5	17
78	MBL Versus CLL. Hematology/Oncology Clinics of North America, 2013, 27, 251-265.	2.2	12
79	Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunology Letters, 2013, 155, 36-39.	2.5	107
80	Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia. Blood, 2013, 121, 2264-2273.	1.4	50
81	<i>In Vitro</i> Sensitivity of CLL Cells to Fludarabine May Be Modulated by the Stimulation of Toll-like Receptors. Clinical Cancer Research, 2013, 19, 367-379.	7.0	41
82	Immunogenetics shows that not all MBL are equal: the larger the clone, the more similar to CLL. Blood, 2013, 121, 4521-4528.	1.4	81
83	Targeting B-cell anergy in chronic lymphocytic leukemia. Blood, 2013, 121, 3879-3888.	1.4	73
84	Diagnostic work-up for clinical and prognostic assessment of acute leukaemia. Rivista Italiana Della Medicina Di Laboratorio, 2012, 8, 26-35.	0.4	1
85	General population low-count CLL-like MBL persists over time without clinical progression, although carrying the same cytogenetic abnormalities of CLL. Blood, 2011, 118, 6618-6625.	1.4	131
86	A novel Rag2â^'/â^'γcâ^'/â^'-xenograft model of human CLL. Blood, 2010, 115, 1605-1609.	1.4	58
87	MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood, 2010, 115, 3949-3959.	1.4	101
88	CLL-like monoclonal B-cell lymphocytosis: Are we all bound to have it?. Seminars in Cancer Biology, 2010, 20, 384-390.	9.6	47
89	Monoclonal B cell lymphocytosis in hepatitis C virus infected individuals. Cytometry Part B - Clinical Cytometry, 2010, 78B, S61-8.	1.5	43
90	Monoclonal B lymphocytosis in the general population. Leukemia and Lymphoma, 2009, 50, 490-492.	1.3	16

#	Article	IF	CITATIONS
91	Inhibition of chronic lymphocytic leukemia progression by full-length chromogranin A and its N-terminal fragment in mouse models. Oncotarget, 0, 7, 41725-41736.	1.8	9