Richard A Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2798812/publications.pdf

Version: 2024-02-01

109321 118850 5,145 65 35 62 citations h-index g-index papers 65 65 65 1953 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high helio-latitude. Experimental Astronomy, 2022, 54, 157-183.	3.7	8
2	Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A. Astrophysical Journal Letters, 2022, 924, L6.	8.3	25
3	Comparing the Heliospheric Cataloging, Analysis, and Techniques Service (HELCATS) Manual and Automatic Catalogues of Coronal Mass Ejections Using Solar Terrestrial Relations Observatory/Heliospheric Imager (STEREO/HI) Data. Solar Physics, 2022, 297, 1.	2.5	3
4	Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations. Space Weather, 2021, 19, e2020SW002553.	3.7	21
5	In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo. Astronomy and Astrophysics, 2021, 656, A2.	5.1	40
6	Development of Space Weather Reasonable Worstâ€Case Scenarios for the UK National Risk Assessment. Space Weather, 2021, 19, e2020SW002593.	3.7	41
7	Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby. Annales Geophysicae, 2021, 39, 811-831.	1.6	3
8	Predicting CMEs Using ELEvoHI With STEREOâ€HI Beacon Data. Space Weather, 2021, 19, e2021SW002873.	3.7	3
9	CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1. Solar Physics, 2020, 295, 1.	2.5	13
10	The Solar Orbiter Heliospheric Imager (SoloHI). Astronomy and Astrophysics, 2020, 642, A13.	5.1	48
11	From heliophysics to space weather forecasts. Astronomy and Geophysics, 2019, 60, 5.26-5.30.	0.2	O
12	CMEs in the Heliosphere: II. A Statistical Analysis of the Kinematic Properties Derived from Single-Spacecraft Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2019, 294, 1.	2.5	25
13	Prospective Out-of-ecliptic White-light Imaging of Coronal Mass Ejections Traveling through the Corona and Heliosphere. Astrophysical Journal, 2018, 852, 111.	4.5	5
14	CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2018, 293, 1.	2.5	36
15	Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the <i>Parker Solar Probe</i> and <i>Solar Orbiter</i> Astrophysical Journal, 2018, 868, 137.	4.5	7
16	Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison. Space Weather, 2018, 16, 442-460.	3.7	51
17	Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum. Astrophysical Journal, 2017, 844, 76.	4.5	7
18	The application of heliospheric imaging to space weather operations: Lessons learned from published studies. Space Weather, 2017, 15, 985-1003.	3.7	23

#	Article	IF	CITATIONS
19	Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.	3.7	65
20	Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging. Solar Physics, 2016, 291, 1853-1875.	2.5	25
21	ElEvoHI: A NOVEL CME PREDICTION TOOL FOR HELIOSPHERIC IMAGING COMBINING AN ELLIPTICAL FRONT WITH DRAG-BASED MODEL FITTING. Astrophysical Journal, 2016, 824, 131.	4.5	63
22	Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project. Space Weather, 2015, 13, 709-725.	3.7	14
23	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	4.5	145
24	Demonstrating the power of heliospheric imaging for space weather: tracking solar ejecta from Sun to Earth. Weather, 2014, 69, 246-249.	0.7	3
25	Observations and Modelling of the Inner Heliosphere: Preface and Tribute to the Late Dr. Andy Breen. Solar Physics, 2013, 285, 1-7.	2.5	3
26	Observations of Rapid Velocity Variations in the Slow Solar Wind. Solar Physics, 2013, 285, 111-126.	2.5	2
27	Stealth Coronal Mass Ejections: A Perspective. Solar Physics, 2013, 285, 269-280.	2.5	60
28	USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH. Astrophysical Journal, 2013, 777, 32.	4.5	10
29	ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY. Astrophysical Journal, 2013, 777, 167.	4.5	88
30	AN ANALYSIS OF THE ORIGIN AND PROPAGATION OF THE MULTIPLE CORONAL MASS EJECTIONS OF 2010 AUGUST 1. Astrophysical Journal, 2012, 750, 45.	4.5	82
31	MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE. Astrophysical Journal, 2012, 758, 10.	4.5	109
32	A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES. Astrophysical Journal, 2012, 750, 23.	4.5	120
33	ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>STEREO</i> Dournal, 2011, 741, 34.	4.5	51
34	Transient Structures and Stream Interaction Regions inÂthe Solar Wind: Results from EISCAT Interplanetary Scintillation, STEREO HI and Venus Express ASPERA-4 Measurements. Solar Physics, 2010, 265, 207-231.	2.5	8
35	Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. Journal of Geophysical Research, 2010, $115, \ldots$	3.3	80
36	Intermittent release of transients in the slow solar wind: 2. In situ evidence. Journal of Geophysical Research, 2010, 115, .	3.3	52

#	Article	IF	CITATIONS
37	The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics, 2009, 254, 387-445.	2.5	312
38	A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams. Solar Physics, 2009, 256, 307-326.	2.5	93
39	Study of CME Propagation in the Inner Heliosphere: SOHO LASCO, SMEI and STEREO HI Observations ofÂtheÂJanuary 2007 Events. Solar Physics, 2009, 256, 239-267.	2.5	58
40	Two Years of the STEREO Heliospheric Imagers. Solar Physics, 2009, 256, 219-237.	2.5	47
41	Pre-CME Onset Fuses – Do the STEREO Heliospheric Imagers Hold the Clues to the CME Onset Process?. Solar Physics, 2009, 259, 277-296.	2.5	4
42	Stereoscopic imaging of an Earthâ€impacting solar coronal mass ejection: A major milestone for the STEREO mission. Geophysical Research Letters, 2009, 36, .	4.0	110
43	A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophysical Research Letters, 2009, 36, .	4.0	164
44	A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	65
45	The radial width of a Coronal Mass Ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO. Annales Geophysicae, 2009, 27, 4349-4358.	1.6	44
46	First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun – Earth Line. Solar Physics, 2008, 247, 171-193.	2.5	92
47	Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Science Reviews, 2008, 136, 67.	8.1	1,422
48	Heliospheric Images of the Solar Wind at Earth. Astrophysical Journal, 2008, 675, 853-862.	4.5	127
49	First imaging of corotating interaction regions using the STEREO spacecraft. Geophysical Research Letters, 2008, 35, .	4.0	165
50	Coronal mass ejection: key issues. Proceedings of the International Astronomical Union, 2008, 4, 191-200.	0.0	0
51	The magnetic Sun. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 1735-1748.	3.4	2
52	SECCHI Observations of the Sun's Garden-Hose Density Spiral. Astrophysical Journal, 2008, 674, L109-L112.	4.5	61
53	On the Coronal Mass Ejection onset and Coronal Dimming. Solar Physics, 2004, 219, 315-342.	2.5	31
54	Euv Spectroscopy of the Sunspot Region Noaa 7981 Using Soho – I. Line Emission and Time Dependence. Solar Physics, 1998, 179, 43-74.	2.5	12

#	Article	IF	CITATIONS
55	Euv Spectroscopy of the Sunspot Region Noaa 7981 Using Soho – II. Velocities and Line Profiles. Solar Physics, 1998, 179, 279-312.	2.5	19
56	Title is missing!. Solar Physics, 1998, 181, 23-50.	2.5	17
57	Active Regions Observed in Extreme Ultraviolet Light by the Coronal Diagnostic Spectrometer on Soho. Solar Physics, 1997, 175, 487-509.	2.5	46
58	Title is missing!. Solar Physics, 1997, 175, 511-521.	2.5	76
59	Euv Blinkers: The Significance of Variations in the Extreme Ultraviolet Quiet Sun. Solar Physics, 1997, 175, 467-485.	2.5	140
60	Euv Observations of a Macrospicule: Evidence for Solar Wind Acceleration?. Solar Physics, 1997, 175, 457-465.	2.5	48
61	Coronal magnetic storms: A new perspective on flares and the ?solar flare myth? debate. Solar Physics, 1996, 166, 441-444.	2.5	35
62	The Coronal Diagnostic Spectrometer for the solar and heliospheric observatory. Solar Physics, 1995, 162, 233-290.	2.5	502
63	On the potential of interplanetary scintillation for predicting geomagnetic activity. Geophysical Research Letters, 1994, 21, 637-640.	4.0	6
64	The launch of solar coronal mass ejections: Results from the coronal mass ejection onset program. Journal of Geophysical Research, 1990, 95, 917-937.	3.3	103
65	2007: International Heliophysical Year. Astronomy and Geophysics, 0, 46, 3.27-3.30.	0.2	5