Stanislovas S Jankauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2798675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	1.1	1,161
2	Heart failure in diabetes. Metabolism: Clinical and Experimental, 2021, 125, 154910.	1.5	80
3	SGLT2 Inhibition via Empagliflozin Improves Endothelial Function and Reduces Mitochondrial Oxidative Stress: Insights From Frail Hypertensive and Diabetic Patients. Hypertension, 2022, 79, 1633-1643.	1.3	67
4	l-Arginine and COVID-19: An Update. Nutrients, 2021, 13, 3951.	1.7	47
5	miR-24 Targets the Transmembrane Glycoprotein Neuropilin-1 in Human Brain Microvascular Endothelial Cells. Non-coding RNA, 2021, 7, 9.	1.3	43
6	Chronic kidney disease: Definition, updated epidemiology, staging, and mechanisms of increased cardiovascular risk. Journal of Clinical Hypertension, 2021, 23, 831-834.	1.0	41
7	The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung and Circulation, 2014, 23, 897-904.	0.2	40
8	Diabetes and restenosis. Cardiovascular Diabetology, 2022, 21, 23.	2.7	40
9	The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Scientific Reports, 2017, 7, 44430.	1.6	35
10	Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Non-coding RNA, 2021, 7, 39.	1.3	35
11	A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2463-2473.	1.1	28
12	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.2	24
13	Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells, 2022, 11, 983.	1.8	23
14	Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle, 2018, 17, 1291-1309.	1.3	21
15	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	1.8	20
16	Glycation of ryanodine receptor in circulating lymphocytes predicts the response to cardiac resynchronization therapy. Journal of Heart and Lung Transplantation, 2022, 41, 438-441.	0.3	19
17	Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis, 2021, 324, 117-120.	0.4	18
18	Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 863238.	1.1	18

#	Article	IF	CITATIONS
19	Mitochondrial Aging: Is There a Mitochondrial Clock?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw184.	1.7	16
20	Advances in the understanding of excitation-contraction coupling: the pulsing quest for drugs against heart failure and arrhythmias. European Heart Journal - Cardiovascular Pharmacotherapy, 2021, 7, e91-e93.	1.4	16
21	Inclisiran: a new milestone on the PCSK9 road to tackle cardiovascular risk. European Heart Journal - Cardiovascular Pharmacotherapy, 2021, 7, e11-e12.	1.4	14
22	Sortilin drives hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress. Journal of Clinical Investigation, 2022, 132, .	3.9	14
23	A Retinoic Acid Receptor <i>î²</i> ₂ Agonist Improves Cardiac Function in a Heart Failure Model. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 182-190.	1.3	13
24	Functional role of miR-34a in diabetes and frailty. Frontiers in Aging, 0, 3, .	1.2	10
25	Thyroid hormones regulate both cardiovascular and renal mechanisms underlying hypertension. Journal of Clinical Hypertension, 2021, 23, 373-381.	1.0	9
26	L-Arginine Improves Cognitive Impairment in Hypertensive Frail Older Adults. Frontiers in Cardiovascular Medicine, 2022, 9, 868521.	1.1	8
27	IP3 receptor orchestrates maladaptive vascular responses in heart failure. Journal of Clinical Investigation, 2022, 132, .	3.9	6
28	Nogo-A reduces ceramide <i>de novo</i> biosynthesis to protect from heart failure. Cardiovascular Research, 2023, 119, 506-519.	1.8	6
29	Cardiovascular Endocrinology: Evolving Concepts and Updated Epidemiology of Relevant Diseases. Frontiers in Endocrinology, 2021, 12, 772876.	1.5	5
30	Effects of insulin resistance on mitochondrial (dys)function. Atherosclerosis, 2022, 341, 52-54.	0.4	5
31	Exosome-Mediated Angiogenesis Underlies LVAD-Induced Bleeding in Patients With End-Stage HeartÂFailure. JACC Basic To Translational Science, 2022, 7, 262-264.	1.9	2
32	Chromatin remodeling and mitochondrial biogenesis underlie the improved cardiac function in heart failure induced by ketogenic diet and betaâ€hydroxibutiyrate supplementation. FASEB Journal, 2021, 35, .	0.2	1
33	The Non-Coding RNA Journal Club: Highlights on Recent Papers—9. Non-coding RNA, 2021, 7, 58.	1.3	1
34	FP184THE EFFECTS OF MITOCHONDRIA-TARGETED ANTIOXIDANT SKQR1 ON RENAL BLOOD FLOW DURING ISCHEMIA/REPERFUSION OF KIDNEY. Nephrology Dialysis Transplantation, 2015, 30, iii128-iii128.	0.4	0
35	Abstract 12950: PUMA Sequestration by IP3Rs Underlies Maladaptive Cardiac Fibrosis. Circulation, 2021, 144, .	1.6	0