Catherine L Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2798511/publications.pdf

Version: 2024-02-01

68 papers

8,635 citations

42 h-index 102487 66 g-index

72 all docs 72 docs citations

times ranked

72

7819 citing authors

#	Article	IF	CITATIONS
1	Lipid droplet biogenesis. Current Opinion in Cell Biology, 2019, 59, 88-96.	5.4	93
2	Functional and Physical Interaction between the Arf Activator GBF1 and Hepatitis C Virus NS3 Protein. Journal of Virology, 2019, 93, .	3.4	16
3	A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nature Communications, 2018, 9, 1332.	12.8	89
4	Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication. Cellular Microbiology, 2018, 20, e12804.	2.1	28
5	GBF1 and Arf1 interact with Miro and regulate mitochondrial positioning within cells. Scientific Reports, 2018, 8, 17121.	3.3	29
6	Membrane Trafficking: A Little Flexibility Helps Vesicles Get into Shape. Current Biology, 2018, 28, R706-R709.	3.9	4
7	Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle. Frontiers in Cell and Developmental Biology, 2018, 6, 29.	3.7	25
8	Inheritance of the Golgi Apparatus and Cytokinesis Are Controlled by Degradation of GBF1. Cell Reports, 2018, 23, 3381-3391.e4.	6.4	13
9	Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophysical Journal, 2017, 112, 1417-1430.	0.5	102
10	GBF1 and Arf1 function in vesicular trafficking, lipid homoeostasis and organelle dynamics. Biology of the Cell, 2017, 109, 391-399.	2.0	52
11	ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function. EMBO Reports, 2016, 17, 800-810.	4.5	206
12	Lipids and Their Trafficking: An Integral Part of Cellular Organization. Developmental Cell, 2016, 39, 139-153.	7.0	125
13	Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication. Cellular Microbiology, 2016, 18, 1121-1133.	2.1	28
14	Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science, 2015, 349, 432-436.	12.6	301
15	Fatty Acid Metabolism Meets Organelle Dynamics. Developmental Cell, 2015, 32, 657-658.	7.0	11
16	GEF-effector interactions. Cellular Logistics, 2014, 4, e943616.	0.9	9
17	Arfs at a Glance. Journal of Cell Science, 2014, 127, 4103-9.	2.0	106
18	The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nature Cell Biology, 2014, 16, 434-444.	10.3	123

#	Article	IF	CITATIONS
19	Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery., 2014,, 151-180.		6
20	Targeting of the Arf-GEF GBF1 to lipid droplets and Golgi membranes. Journal of Cell Science, 2013, 126, 4794-805.	2.0	67
21	Hepatitis C Virus Replication and Golgi Function in Brefeldin A-Resistant Hepatoma-Derived Cells. PLoS ONE, 2013, 8, e74491.	2.5	9
22	An <i>MBoC</i> Favorite: ARF is required for maintenance of yeast Golgi and endosome structure and function. Molecular Biology of the Cell, 2012, 23, 2822-2822.	2.1	0
23	ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews Molecular Cell Biology, 2011, 12, 362-375.	37.0	801
24	Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic. Molecular Biology of the Cell, 2011, 22, 3634-3644.	2.1	26
25	α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. Journal of Cell Biology, 2011, 194, 89-103.	5.2	177
26	Kinetic Studies of the Arf Activator Arno on Model Membranes in the Presence of Arf Effectors Suggest Control by a Positive Feedback Loop. Journal of Biological Chemistry, 2011, 286, 3873-3883.	3.4	70
27	Interaction between the Triglyceride Lipase ATGL and the Arf1 Activator GBF1. PLoS ONE, 2011, 6, e21889.	2.5	56
28	Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1. Cellular Microbiology, 2010, 12, 1463-1479.	2.1	59
29	Mechanisms of transport through the Golgi complex. Journal of Cell Science, 2009, 122, 443-452.	2.0	100
30	GBF1, a Guanine Nucleotide Exchange Factor for Arf, Is Crucial for Coxsackievirus B3 RNA Replication. Journal of Virology, 2009, 83, 11940-11949.	3.4	164
31	Coatomer-dependent protein delivery to lipid droplets. Journal of Cell Science, 2009, 122, 1834-1841.	2.0	216
32	Large Arf1 guanine nucleotide exchange factors: evolution, domain structure, and roles in membrane trafficking and human disease. Molecular Genetics and Genomics, 2009, 282, 329-350.	2.1	86
33	A COPI coat subunit interacts directly with an earlyâ€Golgi localized Arf exchange factor. EMBO Reports, 2009, 10, 58-64.	4.5	61
34	Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nature Cell Biology, 2009, 11, 1421-1426.	10.3	119
35	A Critical Role of a Cellular Membrane Traffic Protein in Poliovirus RNA Replication. PLoS Pathogens, 2008, 4, e1000216.	4.7	118
36	Interactions between Conserved Domains within Homodimers in the BIG1, BIG2, and GBF1 Arf Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry, 2007, 282, 28834-28842.	3.4	48

#	Article	IF	CITATIONS
37	Molecular Determinants of the Interaction between Coxsackievirus Protein 3A and Guanine Nucleotide Exchange Factor GBF1. Journal of Virology, 2007, 81, 5238-5245.	3.4	63
38	Hijacking Components of the Cellular Secretory Pathway for Replication of Poliovirus RNA. Journal of Virology, 2007, 81, 558-567.	3.4	156
39	A Viral Protein that Blocks Arf1-Mediated COP-I Assembly by Inhibiting the Guanine Nucleotide Exchange Factor GBF1. Developmental Cell, 2006, 11, 191-201.	7.0	138
40	Kicking off the insulin cascade. Nature, 2006, 444, 833-834.	27.8	17
41	ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Reports, 2006, 7, 106-113.	4.5	272
42	Effects of Picornavirus 3A Proteins on Protein Transport and GBF1-Dependent COP-I Recruitment. Journal of Virology, 2006, 80, 11852-11860.	3.4	105
43	Mutations in a Highly Conserved Region of the Arf1p Activator GEA2 Block Anterograde Golgi Transport but Not COPI Recruitment to Membranes. Molecular Biology of the Cell, 2005, 16, 3786-3799.	2.1	23
44	Dynamics of GBF1, a Brefeldin A-Sensitive Arf1 Exchange Factor at the Golgi. Molecular Biology of the Cell, 2005, 16, 1213-1222.	2.1	225
45	The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of Cell Science, 2004, 117, 711-722.	2.0	97
46	Phylogenetic Analysis of Sec7-Domain–containing Arf Nucleotide Exchangers. Molecular Biology of the Cell, 2004, 15, 1487-1505.	2.1	134
47	N-terminal acetylation targets GTPases to membranes. Nature Cell Biology, 2004, 6, 379-380.	10.3	19
48	The Sec7 Family of Arf Guanine Nucleotide Exchange Factors. , 2004, , 71-99.		2
49	Membrane Traffic: Arl GTPases Get a GRIP on the Golgi. Current Biology, 2003, 13, R174-R176.	3.9	36
50	Endosome-Specific Localization and Function of the ARF Activator GNOM. Cell, 2003, 112, 141-142.	28.9	24
51	Recycling of Raft-associated Prohormone Sorting Receptor Carboxypeptidase E Requires Interaction with ARF6. Molecular Biology of the Cell, 2003, 14, 4448-4457.	2.1	42
52	A Novel Golgi Membrane Protein Is a Partner of the ARF Exchange Factors Gealp and Gea2p. Molecular Biology of the Cell, 2003, 14, 2357-2371.	2.1	50
53	[31] Functional analysis of ADP-ribosylation factor (ARF) guanine nucleotide exchange factors Gealp and Gea2p in yeast. Methods in Enzymology, 2001, 329, 290-300.	1.0	16
54	Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4961-4965.	7.1	101

#	Article	IF	Citations
55	Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast <i>Saccharomyces cerevisiae</i> . Journal of Cell Science, 2001, 114, 2231-2239.	2.0	48
56	The ARF exchange factors Gealp and Gea2p regulate Golgi structure and function in yeast. Journal of Cell Science, 2001, 114, 2241-2253.	2.0	68
57	Regulators and effectors of the ARF GTPases. Current Opinion in Cell Biology, 2000, 12, 475-482.	5.4	369
58	Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends in Cell Biology, 2000, 10, 60-67.	7.9	446
59	Brefeldin A Revealing the Fundamental Principles Governing Membrane Dynamics and Protein Transport., 2000, 34, 233-272.		57
60	Coordinated Polar Localization of Auxin Efflux Carrier PIN1 by GNOM ARF GEF. Science, 1999, 286, 316-318.	12.6	754
61	Brefeldin A Acts to Stabilize an Abortive ARF–GDP–Sec7 Domain Protein Complex. Molecular Cell, 1999, 3, 275-285.	9.7	421
62	Nucleotide exchange on ARF mediated by yeast Geal protein. Nature, 1996, 384, 479-481.	27.8	277
63	A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature, 1996, 384, 481-484.	27.8	468
64	Effects of brefeldin a on the three-dimensional structure of the golgi apparatus in a sensitive strain of saccharomyces cerevisiae. The Anatomical Record, 1995, 241, 1-9.	1.8	32
65	Ultrastructural modifications of vesicular and Golgi elements in the Saccharomyces cerevisiae sec21 mutant at permissive and non-permissive temperatures. The Anatomical Record, 1994, 240, 32-41.	1.8	14
66	S. cerevisiae $\hat{l}\pm$ pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. Cell, 1991, 67, 389-402.	28.9	137
67	Courtship in S. cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal. Cell, 1990, 63, 1039-1051.	28.9	207
68	Conjugation in Saccharomyces cerevisiae. Annual Review of Cell Biology, 1988, 4, 429-455.	26.1	263