Kenichi Suda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2798381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet, The, 2016, 388, 1012-1024.	6.3	381
2	Epithelial to Mesenchymal Transition in an Epidermal Growth Factor Receptor-Mutant Lung Cancer Cell Line with Acquired Resistance to Erlotinib. Journal of Thoracic Oncology, 2011, 6, 1152-1161.	0.5	233
3	Reciprocal and Complementary Role of <i>MET</i> Amplification and <i>EGFR </i> T790M Mutation in Acquired Resistance to Kinase Inhibitors in Lung Cancer. Clinical Cancer Research, 2010, 16, 5489-5498.	3.2	200
4	Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer and Metastasis Reviews, 2010, 29, 49-60.	2.7	191
5	EGFR T790M Mutation: A Double Role in Lung Cancer Cell Survival?. Journal of Thoracic Oncology, 2009, 4, 1-4.	0.5	167
6	EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clinical Cancer Research, 2015, 21, 5305-5313.	3.2	164
7	Efficacy of Erlotinib for Brain and Leptomeningeal Metastases in Patients with Lung Adenocarcinoma Who Showed Initial Good Response to Gefitinib. Journal of Thoracic Oncology, 2009, 4, 1415-1419.	0.5	151
8	Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer, 2016, 98, 69-75.	0.9	136
9	Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer, 2011, 74, 139-144.	0.9	132
10	Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, ductility, and destiny. Cancer and Metastasis Reviews, 2012, 31, 807-814.	2.7	132
11	KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From InÂVitro Experiments. Journal of Thoracic Oncology, 2021, 16, 1321-1332.	0.5	118
12	Highly Sensitive Detection of EGFR T790M Mutation Using Colony Hybridization Predicts Favorable Prognosis of Patients with Lung Cancer Harboring Activating EGFR Mutation. Journal of Thoracic Oncology, 2012, 7, 1640-1644.	0.5	107
13	Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors InÂVitro. Journal of Thoracic Oncology, 2019, 14, 1753-1765.	0.5	105
14	Surgery for NSCLC in the era of personalized medicine. Nature Reviews Clinical Oncology, 2013, 10, 235-244.	12.5	85
15	Combined Therapy with Mutant-Selective EGFR Inhibitor and Met Kinase Inhibitor for Overcoming Erlotinib Resistance in <i>EGFR</i> -Mutant Lung Cancer. Molecular Cancer Therapeutics, 2012, 11, 2149-2157.	1.9	81
16	Small cell lung cancer transformation and T790M mutation: complimentary roles in acquired resistance to kinase inhibitors in lung cancer. Scientific Reports, 2015, 5, 14447.	1.6	71
17	Clinical Impacts of EGFR Mutation Status: Analysis of 5780 Surgically Resected Lung Cancer Cases. Annals of Thoracic Surgery, 2021, 111, 269-276.	0.7	66
18	Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: An in vitro study. Lung Cancer, 2018, 126, 72-79.	0.9	59

#	Article	IF	CITATIONS
19	Conversion from the "oncogene addiction―to "drug addiction―by intensive inhibition of the EGFR and MET in lung cancer with activating EGFR mutation. Lung Cancer, 2012, 76, 292-299.	0.9	56
20	The insulinâ€like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wildâ€type epidermal growth factor receptor. International Journal of Cancer, 2014, 135, 1002-1006.	2.3	49
21	Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution. Molecular Oncology, 2020, 14, 1947-1965.	2.1	48
22	Role of EGFR mutations in lung cancers: prognosis and tumor chemosensitivity. Archives of Toxicology, 2015, 89, 1227-1240.	1.9	42
23	CD44 Facilitates Epithelial-to-Mesenchymal Transition Phenotypic Change at Acquisition of Resistance to EGFR Kinase Inhibitors in Lung Cancer. Molecular Cancer Therapeutics, 2018, 17, 2257-2265.	1.9	41
24	Effects of secondary EGFR mutations on resistance against upfront osimertinib in cells with EGFR-activating mutations in vitro. Lung Cancer, 2018, 126, 149-155.	0.9	40
25	Prognostic and Therapeutic Implications of Aromatase Expression in Lung Adenocarcinomas with <i>ECFR</i> Mutations. Clinical Cancer Research, 2014, 20, 3613-3622.	3.2	39
26	Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer, 2017, 104, 85-90.	0.9	39
27	Heterogeneity in resistance mechanisms causes shorter duration of epidermal growth factor receptor kinase inhibitor treatment in lung cancer. Lung Cancer, 2016, 91, 36-40.	0.9	38
28	EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis. Cancer Treatment Reviews, 2019, 72, 15-27.	3.4	37
29	Impact of age on epidermal growth factor receptor mutation in lung cancer. Lung Cancer, 2012, 78, 207-211.	0.9	35
30	Impact of bevacizumab in combination with erlotinib on <scp><i>EGFR</i></scp> â€mutated non–small cell lung cancer xenograft models with <scp>T790M</scp> mutation or <scp><i>MET</i></scp> amplification. International Journal of Cancer, 2016, 138, 1024-1032.	2.3	35
31	Early-Stage NSCLC: Advances in Thoracic Oncology 2018. Journal of Thoracic Oncology, 2019, 14, 968-978.	0.5	35
32	Hsp90 Inhibition Overcomes HGF-Triggering Resistance to EGFR-TKIs in EGFR-Mutant Lung Cancer by Decreasing Client Protein Expression and Angiogenesis. Journal of Thoracic Oncology, 2012, 7, 1078-1085.	0.5	34
33	Successes and Limitations of Targeted Cancer Therapy in Lung Cancer. Progress in Tumor Research, 2014, 41, 62-77.	0.1	34
34	Oncogene swap as a novel mechanism of acquired resistance to epidermal growth factor receptorâ€tyrosine kinase inhibitor in lung cancer. Cancer Science, 2016, 107, 461-468.	1.7	31
35	The immune checkpoint, HVEM may contribute to immune escape in non-small cell lung cancer lacking PD-L1 expression. Lung Cancer, 2018, 125, 115-120.	0.9	29
36	Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer cells. Lung Cancer, 2017, 109, 1-8.	0.9	27

#	Article	IF	CITATIONS
37	Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Review of Anticancer Therapy, 2017, 17, 779-786.	1.1	27
38	Emerging MET tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opinion on Emerging Drugs, 2020, 25, 229-249.	1.0	27
39	Lung Cancer with MET exon 14 Skipping Mutation: Genetic Feature, Current Treatments, and Future Challenges. Lung Cancer: Targets and Therapy, 2021, Volume 12, 35-50.	1.3	25
40	Primary Double-Strike Therapy for Cancers to Overcome EGFR Kinase Inhibitor Resistance: ProposalÂfrom the Bench. Journal of Thoracic Oncology, 2017, 12, 27-35.	0.5	24
41	Lung cancers unrelated to smoking: characterized by single oncogene addiction?. International Journal of Clinical Oncology, 2011, 16, 294-305.	1.0	23
42	Emerging oncogenic fusions other than ALK, ROS1, RET, and NTRK in NSCLC and the role of fusions as resistance mechanisms to targeted therapy. Translational Lung Cancer Research, 2020, 9, 2618-2628.	1.3	23
43	Innate Genetic Evolution of Lung Cancers andÂSpatial Heterogeneity: Analysis of Treatment-NaÃ⁻ve Lesions. Journal of Thoracic Oncology, 2018, 13, 1496-1507.	0.5	22
44	Heterogeneity in Immune Marker Expression afterÂAcquisition of Resistance to EGFR Kinase Inhibitors: Analysis of a Case with Small Cell LungÂCancer Transformation. Journal of Thoracic Oncology, 2017, 12, 1015-1020.	0.5	20
45	Recent evidence, advances, and current practices in surgical treatment of lung cancer. Respiratory Investigation, 2014, 52, 322-329.	0.9	16
46	Clinical significance of tumor cavitation in surgically resected early-stage primary lung cancer. Lung Cancer, 2017, 112, 57-61.	0.9	16
47	Drug Tolerance to EGFR Tyrosine Kinase Inhibitors in Lung Cancers with EGFR Mutations. Cells, 2021, 10, 1590.	1.8	16
48	Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE, 2016, 11, e0154186.	1.1	15
49	Activity of <scp>tarloxotinibâ€E</scp> in cells with <scp><i>EGFR</i></scp> exonâ€20 insertion mutations and mechanisms of acquired resistance. Thoracic Cancer, 2021, 12, 1511-1516.	0.8	15
50	Functional Analyses of Mutations in Receptor Tyrosine Kinase Genes in Non–Small Cell Lung Cancer: Double-Edged Sword of <i>DDR2</i> . Clinical Cancer Research, 2016, 22, 3663-3671.	3.2	14
51	CRKL amplification is rare as a mechanism for acquired resistance to kinase inhibitors in lung cancers with epidermal growth factor receptor mutation. Lung Cancer, 2014, 85, 147-151.	0.9	13
52	Increased EGFR Phosphorylation Correlates with Higher Programmed Death Ligand-1 Expression: Analysis of TKI-Resistant Lung Cancer Cell Lines. BioMed Research International, 2017, 2017, 1-7.	0.9	13
53	Comparative expression analysis in small cell lung carcinoma reveals neuroendocrine pattern change in primary tumor versus lymph node metastases. Translational Lung Cancer Research, 2019, 8, 938-950.	1.3	13
54	Potential effect of spliceosome inhibition in small cell lung cancer irrespective of the MYC status. PLoS ONE, 2017, 12, e0172209.	1.1	13

#	Article	IF	CITATIONS
55	Knockdown of the Epidermal Growth Factor Receptor Gene to Investigate Its Therapeutic Potential for the Treatment of Non–Small-Cell Lung Cancers. Clinical Lung Cancer, 2012, 13, 488-493.	1.1	12
56	Solitary pulmonary metastasis from malignant melanoma of the bulbar conjunctiva presenting as a pulmonary ground glass nodule: Report of a case. Thoracic Cancer, 2015, 6, 97-100.	0.8	12
57	Collateral Chemoresistance to Anti-Microtubule Agents in a Lung Cancer Cell Line with Acquired Resistance to Erlotinib. PLoS ONE, 2015, 10, e0123901.	1.1	12
58	Heterogeneity of EGFR Aberrations and Correlation with Histological Structures: Analyses of Therapy-Naive Isogenic Lung Cancer Lesions with EGFR Mutation. Journal of Thoracic Oncology, 2016, 11, 1711-1717.	0.5	12
59	Comparison of PD-L1 Expression Status between Pure-Solid Versus Part-Solid Lung Adenocarcinomas. Biomolecules, 2019, 9, 456.	1.8	11
60	Prognostic value of plasma fibrinogen and d-dimer levels in patients with surgically resected non-small cell lung cancer. Surgery Today, 2020, 50, 1427-1433.	0.7	11
61	Inter-tumor heterogeneity of PD-L1 status: is it important in clinical decision making?. Journal of Thoracic Disease, 2020, 12, 1770-1775.	0.6	11
62	Molecular Factors Associated with Pemetrexed Sensitivity According to Histological Type in Non-small Cell Lung Cancer. Anticancer Research, 2016, 36, 6319-6326.	0.5	11
63	Utility of the Ba/F3 cell system for exploring onâ€ŧarget mechanisms of resistance to targeted therapies for lung cancer. Cancer Science, 2022, 113, 815-827.	1.7	11
64	Prognosis and segmentâ€specific nodal spread of primary lung cancer in the right lower lobe. Thoracic Cancer, 2015, 6, 672-677.	0.8	10
65	Analysis of ERBB4 Mutations and Expression in Japanese Patients with Lung Cancer. Journal of Thoracic Oncology, 2010, 5, 1859-1861.	0.5	9
66	Prognostic Implication of Predominant Histologic Subtypes of Lymph Node Metastases in Surgically Resected Lung Adenocarcinoma. BioMed Research International, 2014, 2014, 1-6.	0.9	9
67	Cell Line Models for Acquired Resistance to First-Line Osimertinib in Lung Cancers—Applications and Limitations. Cells, 2021, 10, 354.	1.8	9
68	Dose-dependence in acquisition of drug tolerant phenotype and high RYK expression as a mechanism of osimertinib tolerance in lung cancer. Lung Cancer, 2021, 154, 84-91.	0.9	9
69	Solitary pulmonary metastasis from lung cancer harboring EML4–ALK after a 15-year disease-free interval. Lung Cancer, 2013, 80, 99-101.	0.9	8
70	Prognostic impact of pleural lavage cytology in patients with primary lung cancer. Lung Cancer, 2016, 102, 60-64.	0.9	8
71	Loss of STING expression is prognostic in non–small cell lung cancer. Journal of Surgical Oncology, 2022, 125, 1042-1052.	0.8	8
72	Activity and mechanism of acquired resistance to tarloxotinib in HER2 mutant lung cancer: an in vitro study. Translational Lung Cancer Research, 2021, 10, 3659-3670.	1.3	7

#	Article	IF	CITATIONS
73	Racial Differences in Lung Cancer Genetics. Journal of Thoracic Oncology, 2015, 10, 230-231.	0.5	6
74	Heterogeneity in Tumors and Resistance to EGFR TKI Therapy—Letter. Cancer Research, 2016, 76, 3109-3110.	0.4	6
75	Spatial heterogeneity of acquired resistance mechanisms to 1st/2nd generation EGFR tyrosine kinase inhibitors in lung cancer. Lung Cancer, 2020, 148, 100-104.	0.9	6
76	Abstract 2101A: CNX-2006, a novel irreversible epidermal growth factor receptor (EGFR) inhibitor, selectively inhibits EGFR T790M and fails to induce T790M-mediated resistance <i>in vitro</i> Cancer Research, 2013, 73, 2101A-2101A.	0.4	6
77	Tumor-associated macrophages—additional effectors at anti-PD-1/PD-L1 therapy?. Journal of Thoracic Disease, 2017, 9, 4197-4200.	0.6	5
78	Inter- and Intratumor Heterogeneity of EGFR Compound Mutations in Non–Small Cell Lung Cancers: Analysis of Five Cases. Clinical Lung Cancer, 2021, 22, e141-e145.	1.1	5
79	Recent Advances in Cancer Immunotherapy. Biomolecules, 2021, 11, 335.	1.8	5
80	Progression after spontaneous regression in lung large cell neuroendocrine carcinoma: Report of a curative resection. Thoracic Cancer, 2015, 6, 655-658.	0.8	4
81	A miRNA Panel Predicts Sensitivity of FGFR Inhibitor in Lung Cancer Cell Lines. Clinical Lung Cancer, 2018, 19, 450-456.	1.1	4
82	For a better adjuvant strategy for resected lung cancer—lessons from treatment failure patterns of the ADJUVANT trial (CTONG 1104). Translational Lung Cancer Research, 2019, 8, S395-S399.	1.3	4
83	Genetic and Prognostic Differences of Non-small Cell Lung Cancer between Elderly Patients and Younger Counterparts. , 2012, 3, 438-43.		4
84	Development of personalized treatments in lung cancer: focusing on the EGFR mutations and beyond. Lung Cancer: Targets and Therapy, 2013, 4, 43.	1.3	3
85	Frequent EGFR mutations and better prognosis in positron emission tomography-negative, solid-type lung cancer. Clinical Lung Cancer, 2021, , .	1.1	3
86	Unintentional Weakness of Cancers: The MEK–ERK Pathway as a Double-Edged Sword. Molecular Cancer Research, 2013, 11, 1125-1128.	1.5	2
87	DNA shedding in non-small-cell lung cancer: useful to assess?. Lancet Respiratory Medicine,the, 2018, 6, 77-78.	5.2	2
88	Personalized post-surgical care?—possible strategies for NSCLCs with EGFR mutation. Translational Lung Cancer Research, 2020, 9, 441-445.	1.3	2
89	Intraoperative molecular imaging—a bright navigator for thoracic surgeons in the era of limited resection. Translational Lung Cancer Research, 2018, 7, S232-S235.	1.3	1
90	Primary pulmonary mucosa-associated lymphoid tissue lymphoma with amyloid light chain-type amyloidosis. Surgical Case Reports, 2019, 5, 105.	0.2	1

#	Article	IF	CITATIONS
91	Targeting the reversible drug-tolerant state: aurora kinase A, is that the final answer?. Translational Cancer Research, 2019, 8, S564-S568.	0.4	1
92	The History and Current State of EGFR-TKIs. Japanese Journal of Lung Cancer, 2017, 57, 69-74.	0.0	1
93	In vitro validation study of HER2 and HER4 mutations identified in an ad hoc secondary analysis of the LUX-Lung 8 randomized clinical trial. Lung Cancer, 2021, 162, 79-85.	0.9	1
94	A case of anterior mediastinal malignant lymphoma complicated by lung adenocarcinoma. The Journal of the Japanese Association for Chest Surgery, 2015, 29, 78-83.	0.0	0
95	Intra-tumor and inter-tumor heterogeneity in MET exon 14 skipping mutations and co-mutations in pulmonary pleomorphic carcinomas. Clinical Lung Cancer, 2021, , .	1.1	0
96	Abstract IA5: Genetic and genomic difference in lung cancer based on ethnicity. Clinical Cancer Research, 2012, 18, IA5-IA5.	3.2	0
97	Evaluation of CD73 in lung cancer Journal of Clinical Oncology, 2017, 35, e14525-e14525.	0.8	0