Leena Marjaana Maunula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiology and Infection, 2011, 139, 895-909.	2.1	204
2	Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infectious Diseases, The, 2018, 18, 545-553.	9.1	193
3	Tracing enteric viruses in the European berry fruit supply chain. International Journal of Food Microbiology, 2013, 167, 177-185.	4.7	175
4	Norovirus Outbreaks from Drinking Water. Emerging Infectious Diseases, 2005, 11, 1716-1721.	4.3	167
5	An outbreak of calicivirus associated with consumption of frozen raspberries. Epidemiology and Infection, 1999, 123, 469-474.	2.1	124
6	Multiple norovirus outbreaks linked to imported frozen raspberries. Epidemiology and Infection, 2012, 140, 260-267.	2.1	123
7	Occurrence of Human Enteric Viruses in Commercial Mussels at Retail Level in Three European Countries. Food and Environmental Virology, 2012, 4, 73-80.	3.4	78
8	Pet dogs—A transmission route for human noroviruses?. Journal of Clinical Virology, 2012, 53, 244-247.	3.1	73
9	Quantitative farm-to-fork risk assessment model for norovirus and hepatitis A virus in European leafy green vegetable and berry fruit supply chains. International Journal of Food Microbiology, 2015, 198, 50-58.	4.7	72
10	Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9 Journal of General Virology, 1998, 79, 321-332.	2.9	66
11	An extensive gastroenteritis outbreak after drinking-water contamination by sewage effluent, Finland. Epidemiology and Infection, 2011, 139, 1105-1113.	2.1	62
12	Evaluation of four virus recovery methods for detecting noroviruses on fresh lettuce, sliced ham, and frozen raspberries. Journal of Virological Methods, 2012, 183, 154-160.	2.1	57
13	Incidence, Diversity, and Molecular Epidemiology of Sapoviruses in Swine across Europe. Journal of Clinical Microbiology, 2010, 48, 363-368.	3.9	55
14	Virological Quality of Irrigation Water in Leafy Green Vegetables and Berry Fruits Production Chains. Food and Environmental Virology, 2017, 9, 72-78.	3.4	54
15	Potential internalisation of caliciviruses in lettuce. International Journal of Food Microbiology, 2009, 135, 175-178.	4.7	51
16	Enteric Viruses in a Large Waterborne Outbreak of Acute Gastroenteritis in Finland. Food and Environmental Virology, 2009, 1, 31-36.	3.4	50
17	Norovirus Transmission between Hands, Gloves, Utensils, and Fresh Produce during Simulated Food Handling. Applied and Environmental Microbiology, 2014, 80, 5403-5410.	3.1	45
18	Norovirus genotypes causing gastroenteritis outbreaks in Finland 1998–2002. Journal of Clinical Virology, 2005, 34, 186-194.	3.1	44

#	Article	IF	CITATIONS
19	Evaluation of a rapid method for recovery of norovirus and hepatitis A virus from oysters and blue mussels. Journal of Virological Methods, 2010, 169, 70-78.	2.1	43
20	Confirmation of Norwalk-like virus amplicons after RT-PCR by microplate hybridization and direct sequencing. Journal of Virological Methods, 1999, 83, 125-134.	2.1	36
21	Novel Microbiological and Spatial Statistical Methods to Improve Strength of Epidemiological Evidence in a Community-Wide Waterborne Outbreak. PLoS ONE, 2014, 9, e104713.	2.5	35
22	Ultraviolet Light Inactivation of Murine Norovirus and Human Norovirus GII: PCR May Overestimate the Persistence of Noroviruses Even When Combined with Pre-PCR Treatments. Food and Environmental Virology, 2014, 6, 48-57.	3.4	34
23	Two Drinking Water Outbreaks Caused by Wastewater Intrusion Including Sapovirus in Finland. International Journal of Environmental Research and Public Health, 2019, 16, 4376.	2.6	34
24	Swabs as a Tool for Monitoring the Presence of Norovirus on Environmental Surfaces in the Food Industry. Journal of Food Protection, 2013, 76, 1421-1428.	1.7	33
25	Presence of human noro- and adenoviruses in river and treated wastewater, a longitudinal study and method comparison. Journal of Water and Health, 2012, 10, 87-99.	2.6	32
26	Hepatitis E Virus Antibodies in Finnish Veterinarians. Zoonoses and Public Health, 2017, 64, 232-238.	2.2	29
27	Hepatitis E virus in patients with unexplained hepatitis in Finland. Journal of Clinical Virology, 2009, 45, 109-113.	3.1	28
28	Emerging OP354-Like P[8] Rotaviruses Have Rapidly Dispersed from Asia to Other Continents. Molecular Biology and Evolution, 2015, 32, 2060-2071.	8.9	27
29	Hepatitis E Virus in Young Pigs in Finland and Characterization of the Isolated Partial Genomic Sequences of Genotype 3 HEV. Foodborne Pathogens and Disease, 2015, 12, 253-260.	1.8	26
30	Waterborne norovirus outbreaks. Future Virology, 2007, 2, 101-112.	1.8	25
31	Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. Water Research, 2020, 171, 115392.	11.3	24
32	Foodborne Zoonoses Common in Hunted Wild Boars. EcoHealth, 2020, 17, 512-522.	2.0	24
33	Human noroviruses in the faeces of wild birds and rodents—new potential transmission routes. Zoonoses and Public Health, 2018, 65, 512-518.	2.2	23
34	Detection of human norovirus from frozen raspberries in a cluster of gastroenteritis outbreaks. Eurosurveillance, 2009, 14, .	7.0	23
35	Effects of the viability of <i>Lactobacillus rhamnosus</i> GG on rotavirus infection in neonatal rats. World Journal of Gastroenterology, 2012, 18, 5925.	3.3	22
36	Increase in outbreaks of gastroenteritis linked to bathing water in Finland in summer 2014. Eurosurveillance, 2017, 22, .	7.0	20

Leena Marjaana Maunula

#	Article	IF	CITATIONS
37	Multicenter Collaborative Trial Evaluation of a Method for Detection of Human Adenoviruses in Berry Fruit. Food Analytical Methods, 2012, 5, 1-7.	2.6	19
38	Performance of pre-RT-qPCR treatments to discriminate infectious human rotaviruses and noroviruses from heat-inactivated viruses: applications of PMA/PMAxx, benzonase and RNase. Journal of Applied Microbiology, 2018, 124, 1008-1016.	3.1	19
39	Bacteriophages Are Good Estimators of Human Viruses Present in Water. Frontiers in Microbiology, 2021, 12, 619495.	3.5	19
40	Contamination by Norovirus and Adenovirus on Environmental Surfaces and in Hands of Conscripts in Two Finnish Garrisons. Food and Environmental Virology, 2017, 9, 62-71.	3.4	16
41	Recovery Comparison of Two Virus Concentration Methods from Wastewater Using Cell Culture and Real-Time PCR. Current Microbiology, 2012, 65, 432-437.	2.2	15
42	The Presence of Norovirus and Adenovirus on Environmental Surfaces in Relation to the Hygienic Level in Food Service Operations Associated with a Suspected Gastroenteritis Outbreak. Food and Environmental Virology, 2017, 9, 334-341.	3.4	15
43	Rapid Detection of Human Norovirus in Frozen Raspberries. Food and Environmental Virology, 2018, 10, 51-60.	3.4	12
44	Detection Method for Avian Influenza Viruses in Water. Food and Environmental Virology, 2012, 4, 26-33.	3.4	11
45	A longitudinal study revealing hepatitis E virus infection and transmission at a swine test station. Research in Veterinary Science, 2013, 95, 1255-1261.	1.9	11
46	Outbreak of gastroenteritis caused by norovirus GII.4 Sydney variant after a wedding reception at a resort/activity centre, Finland, August 2012. Epidemiology and Infection, 2014, 142, 1877-1883.	2.1	10
47	Reduction of Norovirus in Foods by Nonthermal Treatments: A Review. Journal of Food Protection, 2020, 83, 2053-2073.	1.7	9
48	Noroviruses on surfaces: detection, persistence, disinfection and role in environmental transmission. Future Virology, 2016, 11, 207-217.	1.8	7
49	Antibodies Against Hepatitis E Virus (HEV) in European Moose and White-Tailed Deer in Finland. Food and Environmental Virology, 2020, 12, 333-341.	3.4	7
50	Human norovirus infection: surveillance and source tracking. Future Virology, 2011, 6, 431-438.	1.8	6
51	Emerging and re-emerging enteric viruses causing multinational foodborne disease outbreaks. Future Virology, 2014, 9, 301-312.	1.8	4
52	Foodborne viruses in ready-to-eat foods. , 2016, , 51-68.		3
53	Hepatitis E virus: zoonotic and foodborne transmission in developed countries. Future Virology, 2018, 13, 657-670.	1.8	3
54	Preliminary Study to Assess the Performance of Mengovirus Elution from Sludge. Food and Environmental Virology, 2013, 5, 180-183.	3.4	2

#	Article	IF	CITATIONS
55	A Waterborne Outbreak Caused by a Severe Faecal Contamination of Distribution Network: Nokia Case. Special Publication - Royal Society of Chemistry, 2012, , 34-37.	0.0	2
56	Presence of viral haemorrhagic septicaemia virus (VHSV) in the environment of virus-contaminated fish farms and processing plants. Diseases of Aquatic Organisms, 2020, 138, 145-154.	1.0	2
57	Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces. Nanomaterials, 2022, 12, 1037.	4.1	2
58	Impact of climate change and weather variability on viral pathogens in food and water. , 2013, , 458-482.		1
59	Assessment of Food and Waterborne Viral Outbreaks by Using Field Epidemiologic, Modern Laboratory and Statistical Methods—Lessons Learnt from Seven Major Norovirus Outbreaks in Finland. Pathogens, 2021, 10, 1624.	2.8	1
60	A Scandinavian Emergency for Drinking Water Network Contamination: The Nokia Case Study. Special Publication - Royal Society of Chemistry, 2011, , 133-135.	0.0	0
61	VITAL, Monitoring and Control for Virus Safe Pork. , 0, , .		0