
Anne Farewell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Association Study Reveals Host Factors Affecting Conjugation in Escherichia coli. Microorganisms, 2022, 10, 608.	3.6	3
2	Interrogation of chemical changes on, and through, the bacterial envelope of <scp> <i>Escherichia coli </i> </scp> FabF mutant using timeâ€ofâ€flight secondary ion mass spectrometry. Surface and Interface Analysis, 2021, 53, 1006-1012.	1.8	1
3	Genomic Epidemiology and Evolution of <i>Escherichia coli</i> in Wild Animals in Mexico. MSphere, 2021, 6, .	2.9	19
4	Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes. MSystems, 2021, 6, e0034621.	3.8	6
5	Teaching about antibiotic resistance to a broad audience: a multidisciplinary approach. FEMS Microbiology Letters, 2020, 367, .	1.8	2
6	Increased antibiotic efficacy and noninvasive monitoring of Staphylococcus epidermidis biofilms using per-cysteamine-substituted γ-cyclodextrin – A delivery effect validated by fluorescence microscopy. International Journal of Pharmaceutics, 2020, 587, 119646.	5.2	3
7	A High-Throughput Method for Screening for Genes Controlling Bacterial Conjugation of Antibiotic Resistance. MSystems, 2020, 5, .	3.8	10
8	Chemical Changes On, and Through, The Bacterial Envelope in <i>Escherichia coli</i> Mutants Exhibiting Impaired Plasmid Transfer Identified Using Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2019, 91, 11355-11361.	6.5	11
9	Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Development Research, 2019, 80, 19-23.	2.9	48
10	Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Computational Biology, 2018, 14, e1006258.	3.2	127
11	Exploring photoinactivation of microbial biofilms using laser scanning microscopy and confined 2â€photon excitation. Journal of Biophotonics, 2018, 11, e201800018.	2.3	4
12	Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nature Communications, 2018, 9, 1753.	12.8	62
13	Delivery of cyclodextrin polymers to bacterial biofilms — An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy. International Journal of Pharmaceutics, 2017, 531, 650-657.	5.2	18
14	Investigating the Role of the Stringent Response in Lipid Modifications during the Stationary Phase in <i>E. coli</i> by Direct Analysis with Time-of-Flight-Secondary Ion Mass Spectrometry. Analytical Chemistry, 2016, 88, 8680-8688.	6.5	13
15	UspB, a member of the sigma-S regulon, facilitates RuvC resolvase function. DNA Repair, 2010, 9, 1162-1169.	2.8	3
16	Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO Journal, 2009, 28, 2209-2219.	7.8	45
17	The tumor suppressor homolog in fission yeast, myh1+, displays a strong interaction with the checkpoint gene rad1+. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 644, 48-55.	1.0	8
18	Identical, Independent, and Opposing Roles of ppGpp and DksA in Escherichia coli. Journal of Bacteriology, 2007, 189, 5193-5202.	2.2	144

Anne Farewell

#	Article	IF	CITATIONS
19	Metabolic control of the <i>Escherichia coli</i> universal stress protein response through fructoseâ€6â€phosphate. Molecular Microbiology, 2007, 65, 968-978.	2.5	50
20	ppGpp: a global regulator in Escherichia coli. Trends in Microbiology, 2005, 13, 236-242.	7.7	572
21	Heat Shock Protein-Mediated Resistance to High Hydrostatic Pressure in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 2660-2666.	3.1	130
22	Deficiencies in the Endoplasmic Reticulum (ER)-Membrane Protein Gab1p Perturb Transfer of Glycosylphosphatidylinositol to Proteins and Cause Perinuclear ER-associated Actin Bar Formation. Molecular Biology of the Cell, 2004, 15, 2758-2770.	2.1	29
23	Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Applied Microbiology and Biotechnology, 2003, 61, 495-501.	3.6	16
24	Limiting factors inEscherichia colifed-batch production of recombinant proteins. Biotechnology and Bioengineering, 2003, 81, 158-166.	3.3	135
25	Fedâ€batch production of recombinant βâ€galactosidase using the universal stress promoters <i>uspA</i> and <i>uspB</i> in high cell density cultivations. Biotechnology and Bioengineering, 2003, 83, 595-603.	3.3	14
26	Evaluation of inducible promoters on the secretion of a ZZ-proinsulin fusion protein in Escherichia coli. Biotechnology and Applied Biochemistry, 2003, 38, 87.	3.1	15
27	Underproduction of Ï,70 Mimics a Stringent Response. Journal of Biological Chemistry, 2003, 278, 968-973.	3.4	43
28	Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Molecular Microbiology, 2000, 35, 435-443.	2.5	51
29	RpoS-dependent Promoters Require Guanosine Tetraphosphate for Induction Even in the Presence of High Levels of Ï,s. Journal of Biological Chemistry, 2000, 275, 14795-14798.	3.4	116
30	Protein oxidation in response to increased transcriptional or translational errors. Proceedings of the United States of America, 2000, 97, 5746-5749.	7.1	296
31	TheBacillus subtilis glpDleader and antiterminator protein ClpP provide a target for glucose repression inEscherichia coli. FEMS Microbiology Letters, 1998, 162, 93-96.	1.8	7
32	Negative regulation by RpoS: a case of sigma factor competition. Molecular Microbiology, 1998, 29, 1039-1051.	2.5	260
33	The cadmium-stress stimulon of Escherichia coli K-12. Microbiology (United Kingdom), 1998, 144, 1045-1050.	1.8	94
34	Effect of Temperature on In Vivo Protein Synthetic Capacity in <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 4704-4710.	2.2	203
35	<i>uspB</i> , a New Ï, ^S -Regulated Gene in <i>Escherichia coli</i> Which Is Required for Stationary-Phase Resistance to Ethanol. Journal of Bacteriology, 1998, 180, 6140-6147.	2.2	76