Oscar Deniz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797666/publications.pdf

Version: 2024-02-01

81	3,991	18	61
papers	citations	h-index	g-index
85	85	85	5581
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Really natural adversarial examples. International Journal of Machine Learning and Cybernetics, 2022, 13, 1065-1077.	2.3	1
2	Lyapunov stability for detecting adversarial image examples. Chaos, Solitons and Fractals, 2022, 155, 111745.	2.5	0
3	Diffeomorphic transforms for data augmentation of highly variable shape and texture objects. Computer Methods and Programs in Biomedicine, 2022, 219, 106775.	2.6	3
4	Deep autoencoder for false positive reduction in handgun detection. Neural Computing and Applications, 2021, 33, 5885-5895.	3.2	12
5	Handgun Detection Using Combined Human Pose and Weapon Appearance. IEEE Access, 2021, 9, 123815-123826.	2.6	20
6	On the Relationship between Generalization and Robustness to Adversarial Examples. Symmetry, 2021, 13, 817.	1.1	6
7	Automatic Handgun Detection with Deep Learning in Video Surveillance Images. Applied Sciences (Switzerland), 2021, 11, 6085.	1.3	17
8	Using human pose information for handgun detection. Neural Computing and Applications, 2021, 33, 17273-17286.	3.2	10
9	ViolenceNet: Dense Multi-Head Self-Attention with Bidirectional Convolutional LSTM for Detecting Violence. Electronics (Switzerland), 2021, 10, 1601.	1.8	26
10	Semantic versus instance segmentation in microscopic algae detection. Engineering Applications of Artificial Intelligence, 2020, 87, 103271.	4.3	67
11	Glomerulosclerosis identification in whole slide images using semantic segmentation. Computer Methods and Programs in Biomedicine, 2020, 184, 105273.	2.6	100
12	Approaching Adversarial Example Classification with Chaos Theory. Entropy, 2020, 22, 1201.	1.1	5
13	Data for glomeruli characterization in histopathological images. Data in Brief, 2020, 29, 105314.	0.5	21
14	Robustness to adversarial examples can be improved with overfitting. International Journal of Machine Learning and Cybernetics, 2020, 11, 935-944.	2.3	16
15	Automatic Museum Audio Guide. Sensors, 2020, 20, 779.	2.1	6
16	Segmentation Techniques. , 2020, , 135-149.		2
17	Diatom Feature Extraction and Classification. , 2020, , 151-164.		0
18	Optimum web viewer application for DICOM whole slide image visualization in anatomical pathology. Computer Methods and Programs in Biomedicine, 2019, 179, 104983.	2.6	13

#	Article	IF	CITATIONS
19	Adversarial Examples are a Manifestation of the Fitting-Generalization Trade-off. Lecture Notes in Computer Science, 2019, , 569-580.	1.0	3
20	Vision and Crowdsensing Technology for an Optimal Response in Physical-Security. Lecture Notes in Computer Science, 2019, , 15-26.	1.0	2
21	Weapon Detection for Particular Scenarios Using Deep Learning. Lecture Notes in Computer Science, 2019, , 371-382.	1.0	3
22	Gun and Knife Detection Based on Faster R-CNN for Video Surveillance. Lecture Notes in Computer Science, 2019, , 441-452.	1.0	26
23	Deep Learning Versus Classic Methods for Multi-taxon Diatom Segmentation. Lecture Notes in Computer Science, 2019, , 342-354.	1.0	4
24	Spatio-temporal elastic cuboid trajectories for efficient fight recognition using Hough forests. Machine Vision and Applications, 2018, 29, 207-217.	1.7	15
25	Smart Doll: Emotion Recognition Using Embedded Deep Learning. Symmetry, 2018, 10, 387.	1.1	11
26	Fight Recognition in Video Using Hough Forests and 2D Convolutional Neural Network. IEEE Transactions on Image Processing, 2018, 27, 4787-4797.	6.0	90
27	Low-cost oblique illumination: an image quality assessment. Journal of Biomedical Optics, 2018, 23, 1.	1.4	10
28	Lights and pitfalls of convolutional neural networks for diatom identification., 2018,,.		9
28	Lights and pitfalls of convolutional neural networks for diatom identification. , 2018, , . Eyes of Things. , 2017, , .		9
		3.8	
29	Eyes of Things., 2017, , . Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in	3.8	1
30	Eyes of Things., 2017, , . Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199. Automatic quantification of IHC stain in breast TMA using colour analysis. Computerized Medical		2,003
29 30 31	Eyes of Things., 2017, , . Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199. Automatic quantification of IHC stain in breast TMA using colour analysis. Computerized Medical Imaging and Graphics, 2017, 61, 14-27.		1 2,003
29 30 31 32	Eyes of Things., 2017,,. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199. Automatic quantification of IHC stain in breast TMA using colour analysis. Computerized Medical Imaging and Graphics, 2017, 61, 14-27. BONSEYES., 2017,,. Automated Diatom Classification (Part B): A Deep Learning Approach. Applied Sciences (Switzerland),	3.5	1 2,003 12 18
29 30 31 32	Eyes of Things., 2017,,. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199. Automatic quantification of IHC stain in breast TMA using colour analysis. Computerized Medical Imaging and Graphics, 2017, 61, 14-27. BONSEYES., 2017,,. Automated Diatom Classification (Part B): A Deep Learning Approach. Applied Sciences (Switzerland), 2017, 7, 460. Automated Diatom Classification (Part A): Handcrafted Feature Approaches. Applied Sciences	3.5 1.3	1 2,003 12 18 80

#	Article	IF	Citations
37	Sainet: An Image Processing App for Assistance of Visually Impaired People in Social Interaction Scenarios. Lecture Notes in Computer Science, 2016, , 467-477.	1.0	1
38	Bagging Tree Classifier and Texture Features for Tumor Identification in Histological Images. Procedia Computer Science, 2016, 90, 99-106.	1.2	8
39	New Trends of Emerging Technologies in Digital Pathology. Pathobiology, 2016, 83, 61-69.	1.9	52
40	Transition Hough forest for trajectory-based action recognition. , 2016, , .		3
41	Image quality metrics applied to digital pathology. Proceedings of SPIE, 2016, , .	0.8	3
42	Sample Selection for Training Cascade Detectors. PLoS ONE, 2015, 10, e0133059.	1.1	2
43	Influence of Texture and Colour in Breast TMA Classification. PLoS ONE, 2015, 10, e0141556.	1.1	13
44	The eyes of things project., 2015,,.		0
45	Multi-stained whole slide image alignment in digital pathology. Proceedings of SPIE, 2015, , .	0.8	4
46	Pulga, a tiny open-source MQTT broker for flexible and secure IoT deployments. , 2015, , .		9
47	Frequential versus spatial colour textons for breast TMA classification. Computerized Medical Imaging and Graphics, 2015, 42, 25-37.	3.5	9
48	Pollen segmentation and feature evaluation for automatic classification in bright-field microscopy. Computers and Electronics in Agriculture, 2015, 110, 56-69.	3.7	20
49	Automated pollen identification using microscopic imaging and texture analysis. Micron, 2015, 68, 36-46.	1.1	66
50	A Vision-Based Localization Algorithm for an Indoor Navigation App. , 2014, , .		9
51	Breast density classification to reduce false positives in CADe systems. Computer Methods and Programs in Biomedicine, 2014, 113, 569-584.	2.6	29
52	An automated system for whole microscopic image acquisition and analysis. Microscopy Research and Technique, 2014, 77, 697-713.	1.2	17
53	Automatic Handling of Tissue Microarray Cores in High-Dimensional Microscopy Images. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 999-1007.	3.9	10
54	Breast Tissue Microarray Classification Based on Texture and Frequential Features. IFMBE Proceedings, 2014, , 750-753.	0.2	0

#	Article	IF	CITATIONS
55	CADe System Integrated within the Electronic Health Record. BioMed Research International, 2013, 2013, 1-14.	0.9	1
56	TMA Vessel Segmentation Based on Color and Morphological Features: Application to Angiogenesis Research. Scientific World Journal, The, 2013, 2013, 1-11.	0.8	12
57	Colour Model Analysis for Histopathology Image Processing. Lecture Notes in Computational Vision and Biomechanics, 2013, , 165-180.	0.5	5
58	Autofocus evaluation for brightfield microscopy pathology. Journal of Biomedical Optics, 2012, 17, 036008.	1.4	54
59	A parallel solution for high resolution histological image analysis. Computer Methods and Programs in Biomedicine, 2012, 108, 388-401.	2.6	18
60	Quality evaluation of microscopy and scanned histological images for diagnostic purposes. Micron, 2012, 43, 334-343.	1.1	17
61	A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework. Machine Vision and Applications, 2011, 22, 481.	1.7	59
62	Evaluation of autofocus measures for microscopy images of biopsy and cytology. Proceedings of SPIE, 2011, , .	0.8	4
63	Fast and accurate global motion compensation. Pattern Recognition, 2011, 44, 2887-2901.	5.1	15
64	Automatic breast parenchymal density classification integrated into a CADe system. International Journal of Computer Assisted Radiology and Surgery, 2011, 6, 309-318.	1.7	12
65	A geodesic deformable model for automatic segmentation of image sequences applied to radiation therapy. International Journal of Computer Assisted Radiology and Surgery, 2011, 6, 341-350.	1.7	8
66	Face recognition using Histograms of Oriented Gradients. Pattern Recognition Letters, 2011, 32, 1598-1603.	2.6	496
67	Computer vision based eyewear selector. Journal of Zhejiang University: Science C, 2010, 11, 79-91.	0.7	8
68	Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology. Journal of Zhejiang University: Science C, 2010, 11, 407-417.	0.7	0
69	Learning to recognize gender using experience. , 2010, , .		0
70	Image processing methods and architectures in diagnostic pathology Folia Histochemica Et Cytobiologica, 2010, 47, 691-7.	0.6	3
71	Soft Computing Techniques for Human-Computer Interaction. , 2010, , 30-44.		0
72	Emotional Modeling in an Interactive Robotic Head. , 2009, , 1-8.		0

#	Article	IF	CITATIONS
73	Colour model analysis for microscopic image processing. Diagnostic Pathology, 2008, 3, S18.	0.9	7
74	Exploring the Use of Local Binary Patterns as Focus Measure. , 2008, , .		10
75	Becoming Visually Familiar. , 2007, , .		0
76	An engineering approach to sociable robots. Journal of Experimental and Theoretical Artificial Intelligence, 2007, 19, 285-306.	1.8	7
77	ENCARA2: Real-time detection of multiple faces at different resolutions in video streams. Journal of Visual Communication and Image Representation, 2007, 18, 130-140.	1.7	154
78	Who are you? [face recognition]., 2004,,.		1
79	Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters, 2003, 24, 2153-2157.	2.6	147
80	CASIMIRO: a robot head for human-computer interaction. , 0, , .		9
81	Face Recognition from a Tabula Rasa Perspective. , 0, , .		1