
Joanne Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of Aging on the Lung Alveolar Environment, Predetermining Susceptibility to Respiratory Infections. Frontiers in Aging, 2022, 3, .	1.2	6
2	IL-10 Receptor Blockade Delivered Simultaneously with Bacillus Calmette–Guérin Vaccination Sustains Long-Term Protection against <i>Mycobacterium tuberculosis</i> Infection in Mice. Journal of Immunology, 2022, 208, 1406-1416.	0.4	6
3	Local immune responses to tuberculin skin challenge in Mycobacterium bovis BCG-vaccinated baboons: a pilot study of younger and older animals. Immunity and Ageing, 2021, 18, 16.	1.8	4
4	A prospective cross-sectional study of tuberculosis in elderly Hispanics reveals that BCG vaccination at birth is protective whereas diabetes is not a risk factor. PLoS ONE, 2021, 16, e0255194.	1.1	10
5	Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiology Spectrum, 2021, 9, e0001621.	1.2	3
6	Interferon gamma release assays for detection of latent Mycobacterium tuberculosis in older Hispanic people. International Journal of Infectious Diseases, 2021, 111, 85-91.	1.5	12
7	Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nature Microbiology, 2021, 6, 73-86.	5.9	156
8	Blood RNA signatures predict recent tuberculosis exposure in mice, macaques and humans. Scientific Reports, 2020, 10, 16873.	1.6	4
9	Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nature Communications, 2020, 11, 6122.	5.8	304
10	Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2019, 203, 2252-2264.	0.4	57
11	The Lung Mucosa Environment in the Elderly Increases Host Susceptibility to Mycobacterium tuberculosis Infection. Journal of Infectious Diseases, 2019, 220, 514-523.	1.9	45
12	Selective delipidation of Mycobacterium bovis BCG enables direct pulmonary vaccination and enhances protection against Mycobacterium tuberculosis. Mucosal Immunology, 2019, 12, 805-815.	2.7	26
13	Tuberculosis in the elderly: Why inflammation matters. Experimental Gerontology, 2018, 105, 32-39.	1.2	58
14	Altered monocyte phenotypes but not impaired peripheral T cell immunity may explain susceptibility of the elderly to develop tuberculosis. Experimental Gerontology, 2018, 111, 35-44.	1.2	21
15	Deletion of PPARÎ ³ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice. Tuberculosis, 2018, 111, 170-177.	0.8	39
16	Early Secreted Antigenic Target of 6-kDa of Mycobacterium tuberculosis Stimulates IL-6 Production by Macrophages through Activation of STAT3. Scientific Reports, 2017, 7, 40984.	1.6	44
17	Immune Responses to Bacillus Calmette–Guérin Vaccination: Why Do They Fail to Protect against Mycobacterium tuberculosis?. Frontiers in Immunology, 2017, 8, 407.	2.2	116
18	l-Citrulline Metabolism in Mice Augments CD4+ T Cell Proliferation and Cytokine Production In Vitro, and Accumulation in the Mycobacteria-Infected Lung. Frontiers in Immunology, 2017, 8, 1561.	2.2	22

JOANNE TURNER

#	Article	IF	CITATIONS
19	Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization. Infection and Immunity, 2016, 84, 3243-3251.	1.0	44
20	Cardiac Electrical and Structural Changes During Bacterial Infection: An Instructive Model to Study Cardiac Dysfunction in Sepsis. Journal of the American Heart Association, 2016, 5, .	1.6	31
21	Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity, 2016, 45, 861-876.	6.6	176
22	Lung Mucosa Lining Fluid Modification of <i>Mycobacterium tuberculosis</i> to Reprogram Human Neutrophil Killing Mechanisms. Journal of Infectious Diseases, 2015, 212, 948-958.	1.9	42
23	Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: Why does BCG fail to protect against tuberculosis?. Vaccine, 2015, 33, 5035-5041.	1.7	75
24	Chemoproteomics reveals Toll-like receptor fatty acylation. BMC Biology, 2014, 12, 91.	1.7	66
25	Characterization of lung inflammation and its impact on macrophage function in aging. Journal of Leukocyte Biology, 2014, 96, 473-480.	1.5	87
26	Molecular composition of the alveolar lining fluid in the aging lung. Age, 2014, 36, 9633.	3.0	94
27	IL-10 Inhibits Mature Fibrotic Granuloma Formation during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2013, 190, 2778-2790.	0.4	93
28	Killer Cell Lectin-Like Receptor G1 Deficiency Significantly Enhances Survival after Mycobacterium tuberculosis Infection. Infection and Immunity, 2013, 81, 1090-1099.	1.0	26
29	Clonal Expansions of CD8+ T Cells with IL-10 Secreting Capacity Occur during Chronic Mycobacterium tuberculosis Infection. PLoS ONE, 2013, 8, e58612.	1.1	31
30	Human Lung Hydrolases Delineate <i>Mycobacterium tuberculosis</i> –Macrophage Interactions and the Capacity To Control Infection. Journal of Immunology, 2011, 187, 372-381.	0.4	71
31	TLR-2 independent recognition of Mycobacterium tuberculosis by CD11c+ pulmonary cells from old mice. Mechanisms of Ageing and Development, 2010, 131, 405-414.	2.2	17
32	CD8 T Cells in Old Mice Contribute to the Innate Immune Response to <i>Mycobacterium tuberculosis</i> via Interleukin-12p70-Dependent and Antigen-Independent Production of Gamma Interferon. Infection and Immunity, 2009, 77, 3355-3363.	1.0	21
33	Interleukinâ€12 is sufficient to promote antigenâ€independent interferonâ€Î³ production by CD8 T cells in old mice. Immunology, 2009, 128, e679-90.	2.0	20
34	Peripheral Blood Gamma Interferon Release Assays Predict Lung Responses and <i>Mycobacterium tuberculosis</i> Disease Outcome in Mice. Vaccine Journal, 2008, 15, 474-483.	3.2	29
35	Interleukin-10 Promotes <i>Mycobacterium tuberculosis</i> Disease Progression in CBA/J Mice. Journal of Immunology, 2008, 181, 5545-5550.	0.4	198
36	ILâ€12 induced STATâ€4 signaling is increased in CD8 T cells from aged mice. FASEB Journal, 2008, 22, 675.25.	0.2	0

JOANNE TURNER

#	Article	IF	CITATIONS
37	Age dependent increase in early resistance of mice to Mycobacterium tuberculosis is associated with an increase in CD8 T cells that are capable of antigen independent IFN-γ production. Experimental Gerontology, 2006, 41, 1185-1194.	1.2	23
38	Th1 Cytokines Facilitate CD8-T-Cell-Mediated Early Resistance to Infection with Mycobacterium tuberculosis in Old Mice. Infection and Immunity, 2006, 74, 3314-3324.	1.0	40
39	Exposure toMycobacterium aviumcan modulate established immunity againstMycobacterium tuberculosisinfection generated byMycobacterium bovisBCG vaccination. Journal of Leukocyte Biology, 2006, 80, 1262-1271.	1.5	45
40	The influence of age on immunity to infection with Mycobacterium tuberculosis. Immunological Reviews, 2005, 205, 229-243.	2.8	47
41	Murine models of susceptibility to tuberculosis. Archivum Immunologiae Et Therapiae Experimentalis, 2005, 53, 469-83.	1.0	17
42	Stable T-Cell Population Expressing an Effector Cell Surface Phenotype in the Lungs of Mice Chronically Infected with Mycobacterium tuberculosis. Infection and Immunity, 2004, 72, 570-575.	1.0	41
43	A Limited Antigen-Specific Cellular Response Is Sufficient for the Early Control of Mycobacterium tuberculosis in the Lung but Is Insufficient for Long-Term Survival. Infection and Immunity, 2004, 72, 3759-3768.	1.0	15
44	The expression of early resistance to an infection with Mycobacterium tuberculosis by old mice is dependent on IFN type II (IFN-γ) but not IFN type I. Mechanisms of Ageing and Development, 2004, 125, 1-9.	2.2	25
45	Influence of increased age on the development of herpes stromal keratitis. Experimental Gerontology, 2003, 38, 1205-1212.	1.2	9
46	Old Mice Express a Transient Early Resistance to Pulmonary Tuberculosis That Is Mediated by CD8 T Cells. Infection and Immunity, 2002, 70, 4628-4637.	1.0	44
47	In Vivo IL-10 Production Reactivates Chronic Pulmonary Tuberculosis in C57BL/6 Mice. Journal of Immunology, 2002, 169, 6343-6351.	0.4	243
48	Identification of altered integrin α/β chain expression on T cells from old mice infected with Mycobacterium tuberculosis. Experimental Gerontology, 2002, 37, 907-916.	1.2	10
49	Reduced up-regulation of memory and adhesion/integrin molecules in susceptible mice and poor expression of immunity to pulmonary tuberculosis. Microbiology (United Kingdom), 2002, 148, 2959-2966.	0.7	21

50 Growing Old and Immunity to Bacteria. , 0, , 413-423.

1