Carla C Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797251/publications.pdf

Version: 2024-02-01

759233 677142 23 480 12 22 h-index citations g-index papers 23 23 23 571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Brazilian Journal of Medical and Biological Research, 2022, 55, e11612.	1.5	7
2	Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules, 2021, 11, 503.	4.0	25
3	microRNAâ€140â€3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecanâ€4. Journal of Cellular Biochemistry, 2021, 122, 1491-1505.	2.6	12
4	Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells. International Journal of Biochemistry and Cell Biology, 2020, 128, 105848.	2.8	12
5	Heparan sulfate proteoglycans as targets for cancer therapy: a review. Cancer Biology and Therapy, 2020, 21, 1087-1094.	3.4	17
6	The lipid composition affects Trastuzumab adsorption at monolayers at the air-water interface. Chemistry and Physics of Lipids, 2020, 227, 104875.	3.2	17
7	Thermodynamic and Morphological Properties of Trastuzumab Regulated by the Lipid Composition of Cell Membrane Models at the Air-Water Interface. Biophysical Journal, 2020, 118, 77a.	0.5	3
8	Interaction of Trastuzumab with biomembrane models at air-water interfaces mimicking cancer cell surfaces. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182992.	2.6	7
9	Heparan sulfate proteoglycans as trastuzumab targets in anoikisâ€resistant endothelial cells. Journal of Cellular Biochemistry, 2019, 120, 13826-13840.	2.6	15
10	Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biology, 2017, 63, 23-37.	3.6	46
11	Acquisition of anoikis resistance promotes alterations in the Ras/ERK and PI3K/Akt signaling pathways and matrix remodeling in endothelial cells. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1116-1137.	4.9	41
12	CdSe magic-sized quantum dots incorporated in biomembrane models at the air–water interface composed of components of tumorigenic and non-tumorigenic cells. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1533-1540.	2.6	9
13	Acquisition of Anoikis Resistance Up-Regulates Syndecan-4 Expression in Endothelial Cells. PLoS ONE, 2014, 9, e116001.	2.5	23
14	Effect of carrageenans of different chemical structures in biointerfaces: A Langmuir film study. Colloids and Surfaces B: Biointerfaces, 2013, 111, 530-535.	5.0	6
15	Surface chemistry and spectroscopy studies on 1,4-naphthoquinone in cell membrane models using Langmuir monolayers. Journal of Colloid and Interface Science, 2013, 402, 300-306.	9.4	27
16	Probing the interaction between heparan sulfate proteoglycan with biologically relevant molecules in mimetic models for cell membranes: A Langmuir film study. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1211-1217.	2.6	13
17	Identification of the mutations associated with hereditary hyperferritinemia cataract syndrome and hemochromatosis in a Brazilian family. Clinical Genetics, 2011, 79, 189-192.	2.0	4
18	Putative role of heparan sulfate proteoglycan expression and shedding on the proliferation and survival of cells after photodynamic therapy. International Journal of Biochemistry and Cell Biology, 2007, 39, 1130-1141.	2.8	8

#	Article	IF	CITATION
19	EJ-ras oncogene transfection ofÂendothelial cells upregulates theÂexpression ofÂsyndecan-4Âand downregulates heparan sulfate sulfotransferases andÂepimerase. Biochimie, 2006, 88, 1493-1504.	2.6	27
20	 Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Brazilian Journal of Medical and Biological Research, 2006, 39, 157-167.	1.5	63
21	Heparan sulfate and control of endothelial cell proliferation: increased synthesis during the S phase of the cell cycle and inhibition of thymidine incorporation induced by ortho-nitrophenyl- \hat{l}^2 -d-xylose. Biochimica Et Biophysica Acta - General Subjects, 2004, 1673, 178-185.	2.4	13
22	Heparins and Heparinoids: Occurrence, Structure and Mechanism of Antithrombotic and Hemorrhagic Activities. Current Pharmaceutical Design, 2004, 10, 951-966.	1.9	85
23	Effect of b -D-xylosides bearing different aglycones on the synthesis of proteoglycans during the cell cycle of endothelial cells in culture. Anais Da Academia Brasileira De Ciencias, 2000, 72, 107-108.	0.8	O