List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2797045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541, 481-487.	13.7	4,977
2	An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. Journal of Neuroscience, 2014, 34, 11929-11947.	1.7	4,119
3	Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, 2017, 46, 957-967.	6.6	1,507
4	New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1738-46.	3.3	1,400
5	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
6	Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1896-E1905.	3.3	879
7	ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature, 2017, 549, 523-527.	13.7	852
8	Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nature Medicine, 2018, 24, 931-938.	15.2	712
9	Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 2018, 359, 1269-1273.	6.0	422
10	Barrier Mechanisms in the Developing Brain. Frontiers in Pharmacology, 2012, 3, 46.	1.6	378
11	Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nature Neuroscience, 2019, 22, 1635-1648.	7.1	346
12	Neuroinflammatory astrocyte subtypes in the mouse brain. Nature Neuroscience, 2021, 24, 1475-1487.	7.1	285
13	Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature, 2021, 599, 102-107.	13.7	277
14	Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell, 2022, 185, 2452-2468.e16.	13.5	237
15	Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell, 2019, 176, 43-55.e13.	13.5	222
16	Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nature Communications, 2020, 11, 3753.	5.8	176
17	Development of the choroid plexus and blood-CSF barrier. Frontiers in Neuroscience, 2015, 9, 32.	1.4	151
18	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	2.9	146

2

#	Article	IF	CITATIONS
19	The blood–CSF barrier explained: when development is not immaturity. BioEssays, 2008, 30, 237-248.	1.2	140
20	Neurotoxic Reactive Astrocytes Drive Neuronal Death after Retinal Injury. Cell Reports, 2020, 31, 107776.	2.9	140
21	Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease. Neuron, 2022, 110, 1788-1805.e10.	3.8	131
22	SnapShot: Astrocytes in Health and Disease. Cell, 2015, 162, 1170-1170.e1.	13.5	116
23	CD49f Is a Novel Marker of Functional and Reactive Human iPSC-Derived Astrocytes. Neuron, 2020, 107, 436-453.e12.	3.8	115
24	Transporters of the blood–brain and blood–CSF interfaces in development and in the adult. Molecular Aspects of Medicine, 2013, 34, 742-752.	2.7	111
25	Astrocyte-immune cell interactions in physiology and pathology. Immunity, 2021, 54, 211-224.	6.6	105
26	Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicology Letters, 2010, 197, 51-59.	0.4	104
27	Astrocytes and microglia: Models and tools. Journal of Experimental Medicine, 2019, 216, 71-83.	4.2	103
28	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Reports, 2018, 25, 1-9.e5.	2.9	100
29	Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature, 2020, 588, 459-465.	13.7	98
30	Single-cell delineation of lineage and genetic identity in the mouse brain. Nature, 2022, 601, 404-409.	13.7	93
31	The inner CSFââ,¬â€œbrain barrier: developmentally controlled access to the brain via intercellular junctions. Frontiers in Neuroscience, 2015, 9, 16.	1.4	92
32	Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathologica Communications, 2019, 7, 83.	2.4	84
33	Solving neurodegeneration: common mechanisms and strategies for new treatments. Molecular Neurodegeneration, 2022, 17, 23.	4.4	83
34	Blood-CSF barrier function in the rat embryo. European Journal of Neuroscience, 2006, 24, 65-76.	1.2	78
35	Activated microglia drive demyelination via <scp>CSF1R</scp> signaling. Glia, 2021, 69, 1583-1604.	2.5	74
36	Fluids and barriers of the CNS: a historical viewpoint. Fluids and Barriers of the CNS, 2011, 8, 2.	2.4	70

#	Article	IF	CITATIONS
37	Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids and Barriers of the CNS, 2013, 10, 25.	2.4	68
38	Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach. PLoS ONE, 2013, 8, e65629.	1.1	65
39	Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach. PLoS ONE, 2012, 7, e33554.	1.1	61
40	Immune responses at brain barriers and implications for brain development and neurological function in later life. Frontiers in Integrative Neuroscience, 2013, 7, 61.	1.0	57
41	Cellular transfer of macromolecules across the developing choroid plexus of <i>Monodelphis domestica</i> . European Journal of Neuroscience, 2009, 29, 253-266.	1.2	47
42	Astrocytes: Adhesion Molecules and Immunomodulation. Current Drug Targets, 2016, 17, 1871-1881.	1.0	46
43	Not everything is scary about a glial scar. Nature, 2016, 532, 182-183.	13.7	44
44	How Support of Early Career Researchers Can Reset Science in the Post-COVID19 World. Cell, 2020, 181, 1445-1449.	13.5	43
45	Don't forget astrocytes when targeting Alzheimer's disease. British Journal of Pharmacology, 2019, 176, 3585-3598.	2.7	40
46	Astrocytes usurp neurons as a disease focus. Nature Neuroscience, 2019, 22, 512-513.	7.1	40
47	Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica. Cerebrospinal Fluid Research, 2010, 7, 16.	0.5	37
48	Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Frontiers in Neuroscience, 2015, 9, 123.	1.4	37
49	Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium. PLoS ONE, 2014, 9, e106592.	1.1	32
50	Melanoma-Secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discovery, 2022, 12, 1314-1335.	7.7	31
51	Astrocytes. Current Biology, 2021, 31, R326-R327.	1.8	29
52	Age-Dependent Transcriptome and Proteome Following Transection of Neonatal Spinal Cord of Monodelphis domestica (South American Grey Short-Tailed Opossum). PLoS ONE, 2014, 9, e99080.	1,1	28
53	Modification of protein transfer across blood/cerebrospinal fluid barrier in response to altered plasma protein composition during development. European Journal of Neuroscience, 2011, 33, 391-400.	1.2	21
54	Monitoring phagocytic uptake of amyloid β into glial cell lysosomes in real time. Chemical Science, 2021, 12, 10901-10918.	3.7	19

#	Article	IF	CITATIONS
55	SPARC/osteonectin, an endogenous mechanism for targeting albumin to the blood-cerebrospinal fluid interface during brain development. European Journal of Neuroscience, 2011, 34, 1062-1073.	1.2	18
56	An Overview of Astrocyte Responses in Genetically Induced Alzheimer's Disease Mouse Models. Cells, 2020, 9, 2415.	1.8	18
57	Modern approaches to investigating nonâ€neuronal aspects of Alzheimer's disease. FASEB Journal, 2019, 33, 1528-1535.	0.2	16
58	Proteomic Alterations and Novel Markers of Neurotoxic Reactive Astrocytes in Human Induced Pluripotent Stem Cell Models. Frontiers in Molecular Neuroscience, 2022, 15, 870085.	1.4	15
59	Isoform-dependent APOE secretion modulates neuroinflammation. Nature Reviews Neurology, 2021, 17, 265-266.	4.9	13
60	Microglia Metabolic Breakdown Drives Alzheimer's Pathology. Cell Metabolism, 2019, 30, 405-406.	7.2	8
61	Correction: Zhang et al., An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. Journal of Neuroscience, 2015, 35, 864-866.	1.7	7
62	Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in <scp>chemicallyâ€induced</scp> and <scp>immuneâ€mediated</scp> mouse models of multiple sclerosis. Glia, 2022, 70, 1950-1970.	2.5	7
63	Editorial: Ontogeny and Phylogeny of Brain Barrier Mechanisms. Frontiers in Neuroscience, 2016, 10, 41.	1.4	4
64	Assessing Blood–Cerebrospinal Fluid Barrier Permeability in the Rat Embryo. Methods in Molecular Biology, 2011, 686, 247-265.	0.4	4
65	Diversity reaches the stars. Nature, 2017, 548, 396-397.	13.7	3
66	Bypassing the barrier: new routes for delivery of macromolecules to the central nervous system. Journal of Physiology, 2018, 596, 361-362.	1.3	3
67	Play It Again, SAM: Macrophages Control Peripheral Fat Metabolism. Trends in Immunology, 2018, 39, 81-82.	2.9	3
68	Regional Differences in Penetration of the Protein Stabilizer Trimethoprim (TMP) in the Rat Central Nervous System. Frontiers in Molecular Neuroscience, 2020, 13, 167.	1.4	2
69	Astrocytes have a license to kill inflammatory TÂcells. Immunity, 2021, 54, 614-616.	6.6	2
70	Generating Cell Type-Specific Protein Signatures from Non-symptomatic and Diseased Tissues. Annals of Biomedical Engineering, 2020, 48, 2218-2232.	1.3	1
71	Ben Barres (1954–2017). Neuron, 2018, 97, 1211-1213.	3.8	0
72	PLâ€03â€01: INGE GRUNDKEâ€ŀQBAL AWARD FOR ALZHEIMER'S RESEARCH: NEUROTOXIC REACTIVE ASTROCY ARE INDUCED BY ACTIVATED MICROGLIA. Alzheimer's and Dementia, 2019, 15, P872.	TES.4	0

#	Article	IF	CITATIONS
73	1103: Astrocyte polarization in perinatal white matter injury and its contribution to disease outcomes. American Journal of Obstetrics and Gynecology, 2020, 222, S679-S680.	0.7	0
74	Don't you know that you're ToxSeq?. Nature Immunology, 2020, 21, 495-497.	7.0	0
75	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. SSRN Electronic Journal, 0, , .	0.4	0