List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and properties of 1-[(3-fluoroadamantan-1-yl)methyl]-3-R-ureas and 1,1′-(alkan-1,n-diyl)bis{3-[(3-fluoroadamantan-1-yl)methyl]ureas} as promising soluble epoxide hydrolase inhibitors. Russian Chemical Bulletin, 2022, 71, 107-113.	0.4	8
2	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XIV. N-[(Adamantan-1-yl)(phenyl)methyl]-N′-substituted Ureas and Symmetrical Bis-ureas. Russian Journal of Organic Chemistry, 2022, 58, 259-267.	0.3	2
3	Synthesis and Properties of 1,3-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: VII. Synthesis and Properties 1-[(Adamantan-1-yl)methyl]-3-(fluoro, chlorophenyl) Ureas. Russian Journal of Organic Chemistry, 2021, 57, 143-150.	0.3	1
4	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: VIII. Synthesis and Properties of N-[(3-Chloroadamantan-1-yl)methyl]-N′-(Fluoro,) Tj ETQq0 0 0 rgBT	「∕@≇erlocl	k 4 0 Tf 50 63
5	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: IX. N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl) Ureas and Thioureas. Russian Journal of Organic Chemistry, 2021, 57, 515-523.	0.3	2
6	Phosphine-catalyzed [3+2] cycloaddition of Morita—Baylis—Hillman carbonates to isothiocyanates in the synthesis of adamantane-containing trisubstituted aminothiophenes. Russian Chemical Bulletin, 2021, 70, 880-884.	0.4	2
7	Prospects for the inhibition of the phosphatase domain of human soluble epoxide hydrolase (sEH-P). Russian Chemical Bulletin, 2021, 70, 1067-1074.	0.4	2
8	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XI. 1-[(Adamantan-1 yl)alkyl]-3-arylselenoureas. Russian Journal of Organic Chemistry, 2021, 57, 1036-1046.	0.3	4
9	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XIII. N-[(3-Bromoadamantan-1-yl)methyl]ureas and Symmetrical Diureas. Russian Journal of Organic Chemistry, 2021, 57, 1913-1920.	0.3	1
10	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XII. N-(1,3,3-Trimethylbicyclo[2.2.1]heptan-2-yl)-N′-R-ureas and -thioureas. Russian Journal of Organic Chemistry, 2021, 57, 1891-1900.	0.3	1
11	Synthesis and Properties of 1,3-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: IV.1 1-(Bicyclo[2.2.1]hept-5-en-2-yl)-3-(fluoro, chlorophenyl)ureas. Russian Journal of Organic Chemistry, 2020, 56, 1336-1346.	0.3	2
12	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: II. N-(4-Oxoadamantan-1-yl)-N′-[fluoro(chloro)phenyl]ureas. Russian Journal of Organic Chemistry, 2020, 56, 983-989.	0.3	3
13	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): IX. Noncatalytic Reactions with Alkylarenes. Russian Journal of Organic Chemistry, 2020, 56, 1041-1045.	0.3	2
14	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: III. Synthesis and Properties ofN-[2-(Adamantan-1-yl)ethyl]-N′-R-ureas. Russian Journal of Organic Chemistry, 2020, 56, 1132-1139.	0.3	2
15	Reactions of Isocyanatoadamantanes with 3,6-Diazahomoadamantan-9-ylidene-substituted Hydrazines and Oximes. Russian Journal of Organic Chemistry, 2020, 56, 729-734.	0.3	0
16	Synthesis and Properties of 1,3-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: I. Synthesis of 1-(Adamantan-1-yl)-3-(fluoro, chlorophenyl)ureas. Russian Journal of Organic Chemistry, 2020, 56, 735-740.	0.3	8
17	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: VI. N-[Fluoro(chloro)phenyl]-N′-(4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptan-1-yl)ureas. Russian Journal of Organic Chemistry, 2020, 56, 2057-2066.	0.3	1
18	Synthesis and Properties of 1,3-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: V. 1-(Bicyclo[2.2.1]heptan-2-yl)-3-R- and 1-(1,7,7-Tricyclo[2.2.1]heptan-2-yl)-3-R-ureas. Russian Journal of Organic Chemistry, 2020, 56, 1893-1904.	0.3	2

#	Article	IF	CITATIONS
19	Chemical Transformations of Tetracyclo[3.3.1.1.3,7.0.1,3]decane (1,3-Dehydroadamantane): VIII. Reaction of 1,3-Dehydroadamantane with Aliphatic Aldehydes. Russian Journal of Organic Chemistry, 2019, 55, 640-645.	0.3	3
20	Synthesis of 1,3-Disubstituted Ureas Containing Cycloheptyl or Bicyclo[2.2.1]heptyl Fragments, as Soluble Epoxide Hydrolase Inhibitors. Russian Journal of Organic Chemistry, 2019, 55, 1136-1144.	0.3	0
21	Synthesis of Bicyclic Isocyanates and Bioisosteric 1,3-Disubstituted Ureas as Soluble Epoxide Hydrolase Inhibitors. Russian Journal of Organic Chemistry, 2019, 55, 1166-1176.	0.3	3
22	Synthesis of New Camphane-Type Amides: Potential Synthetic Adaptogenes. Russian Journal of General Chemistry, 2019, 89, 399-404.	0.3	0
23	Synthesis and Properties of Ethyl [(Adamantan-1-yl)alkylene(phenylene)amino]oxoacetates and N1,N2-Bis[(adamantan-1-yl)alkylene(phenylene)]oxamides. Russian Journal of Organic Chemistry, 2019, 55, 1679-1685.	0.3	0
24	Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorganic Chemistry, 2018, 76, 510-527.	2.0	53
25	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): VII. Reaction of 1,3-Dehydroadamantane with Alkanediols and Amino Alcohols. Russian Journal of Organic Chemistry, 2018, 54, 1760-1763.	0.3	5
26	Synthesis and Properties of N-[R-Adamantan-1(2)-yl]-N′-(2-fluorophenyl)ureas—Target-Oriented Soluble Epoxide Hydrolase Inhibitors. Russian Journal of Organic Chemistry, 2018, 54, 1307-1312.	0.3	5
27	Synthesis and Properties of N-(R-Adamantan-1-ylalkyl)-Nâ€2-[3(4)-fluorophenyl]thioureas—Target-Oriented Human Soluble Epoxide Hydrolase (hsEH) Inhibitors. Russian Journal of Organic Chemistry, 2018, 54, 1469-1474.	0.3	2
28	Synthesis of Homologs of 1-Isothiocyanatoadamantane. Russian Journal of Organic Chemistry, 2018, 54, 1475-1479.	0.3	4
29	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): VI. Reactions of 1,3-Dehydroadamantane with Carboxylic Acid Chlorides. Russian Journal of Organic Chemistry, 2018, 54, 840-843.	0.3	2
30	Chemical transformations of tetracyclo[3.3.1.13,7.01,3]decane (1,3-dehydroadamantane): IV. Reaction of 1,3-dehydroadamantane with dicarboxylic acids esters. Russian Journal of Organic Chemistry, 2017, 53, 160-162.	0.3	2
31	Chemical transformations of tetracyclo[3.3.1.13,7.01,3]decane (1,3-dehydroadamantane): II. Reaction of 1,3-dehydroadamantane with N,N-dialkylcarboxamides. Russian Journal of Organic Chemistry, 2017, 53, 6-8.	0.3	6
32	Chemical transformations of tetracyclo[3.3.1.13,7.01,3]decane (1,3-dehydroadamantane): III. Reactions of 1,3-dehydroadamantane with isothiocyanates. Russian Journal of Organic Chemistry, 2017, 53, 9-11.	0.3	2
33	Synthesis and properties of symmetrical N,N'-Bis(R-adamantan-1-yl)ureas as target-oriented soluble epoxide hydrolase (sEH) inhibitors. Russian Journal of Organic Chemistry, 2017, 53, 977-980.	0.3	14
34	Synthesis of ethyl ({[adamantan-1(2)-ylalkyl]-carbamothioyl}amino)acetates. Russian Journal of Organic Chemistry, 2017, 53, 1176-1179.	0.3	2
35	One-step preparation method for adamantyl-containing isocyanates, precursors of epoxide hydrolase inhibitors. Russian Journal of Organic Chemistry, 2017, 53, 673-678.	0.3	11
36	Synthesis and properties of 1-(R-adamant-1-yl)-3-(1-propionylpiperidin-4-yl)ureas and 4-({4-[3-(R-adamant-1-yl)ureido]cyclohexyl}oxy)benzoic acids, efficient target-oriented human soluble epoxide hydrolase inhibitors. Russian Chemical Bulletin, 2017, 66, 1876-1880.	0.4	11

#	Article	IF	CITATIONS
37	Arylation of adamantanamines: IX. Copper(I)-catalyzed arylation of adamantane-containing amines. Russian Journal of Organic Chemistry, 2017, 53, 1788-1798.	0.3	8
38	New Facile Synthesis of Adamantyl Isothiocyanates. SynOpen, 2017, 01, 0121-0124.	0.8	8
39	Synthesis of epoxide hydrolase sEH inhibitors and study of its inhibitory properties. Russian Chemical Bulletin, 2016, 65, 2299-2305.	0.4	3
40	Amination of chloro-substituted heteroarenes with adamantane-containing amines. Russian Chemical Bulletin, 2016, 65, 1820-1828.	0.4	4
41	Chemical transformations of tetracyclo[3.3.1.1.3,7.0.1,3]decane (1,3-dehydroadamantane): I. Reaction of 1,3-dehydroadamantane with carboxylic acids esters. Russian Journal of Organic Chemistry, 2016, 52, 1118-1120.	0.3	8
42	Synthesis and properties of diadamantyl-containing symmetric diureas as target-oriented inhibitors of human soluble epoxide hydrolase. Russian Journal of Bioorganic Chemistry, 2016, 42, 404-414.	0.3	7
43	Synthesis of N-adamantan-1(2)-yl ureidoacetic acids as precursors of soluble epoxide hydrolase inhibitors. Russian Journal of Organic Chemistry, 2016, 52, 582-584.	0.3	8
44	Synthesis of adamantyl-containing 1,3-disubstituted diureas and thioureas, efficient targeted inhibitors of human soluble epoxide hydrolase. Russian Chemical Bulletin, 2015, 64, 1569-1575.	0.4	14
45	Synthesis of adamantyl-containing isothiocyanates. Russian Journal of Organic Chemistry, 2015, 51, 1795-1796.	0.3	8
46	Unusual reaction of N-(1-adamantylmethyl)-2-hydroxybenzamide potassium salt with allyl bromide. Russian Journal of Organic Chemistry, 2015, 51, 1801-1802.	0.3	0
47	Synthesis and Study of 1,3- and 1,3,3-Substituted Ureas Containing Isoxazole and Adamantane Fragments. Chemistry of Heterocyclic Compounds, 2015, 50, 1719-1726.	0.6	8
48	Arylation of adamantanamines: VII. Copper(I)-catalyzed N-heteroarylation of adamantane-containing amines with halopyridines. Russian Journal of Organic Chemistry, 2015, 51, 301-308.	0.3	15
49	Catalyst-free amination of 2-fluoropyridine and 2-fluoro-5-halopyridines with adamantane amines. Russian Chemical Bulletin, 2015, 64, 683-688.	0.4	3
50	Reactions of 1,3-dehydroadamantane with inorganic oxygen-free acids. Russian Journal of Organic Chemistry, 2014, 50, 1276-1278.	0.3	10
51	Adamantylation of carbonitriles with 1,3-dehydroadamantane and its homologs. Russian Journal of Organic Chemistry, 2014, 50, 1279-1282.	0.3	4
52	Synthesis of petroleum polymer resins by initiated oligomerization of the C8/C9 gasoline pyrolysis fraction. Petroleum Chemistry, 2014, 54, 69-71.	0.4	8
53	Synthesis of 1-Adamantyl-3,4,5-R1,R2,R3-Pyrazoles. Chemistry of Heterocyclic Compounds, 2014, 50, 752-756.	0.6	5
54	Adamantylation of saturated nitrogen-containing heterocycles. Russian Journal of Organic Chemistry, 2014, 50, 447-448.	0.3	9

#	Article	IF	CITATIONS
55	Reaction of 1,3-dehydroadamantane with dicarboxylic acid imides. Russian Journal of Organic Chemistry, 2013, 49, 1403-1404.	0.3	6
56	Arylation of adamantanamines: VI. Palladium-catalyzed arylation of amines and diamines of the adamantane series with 3-bromopyridine. Russian Journal of Organic Chemistry, 2013, 49, 1-7.	0.3	9
57	Reactions of 1,3-dehydroadamantane with some aromatic disulfides. Russian Journal of General Chemistry, 2012, 82, 1183-1184.	0.3	1
58	Method for synthesis of 1-adamantyl esters of unsaturated acids. Russian Journal of Applied Chemistry, 2012, 85, 1590-1591.	0.1	4
59	Arylation of adamantanamines: V. Palladium-catalyzed amination of isomeric chloroquinolines with diamines of the adamantane series. Russian Journal of Organic Chemistry, 2012, 48, 1495-1508.	0.3	8
60	Selective O-adamantylation of dihydric phenols by 1,3-dehydroadamantane. Russian Journal of Applied Chemistry, 2011, 84, 730-731.	0.1	3
61	Adamantylation of azoles with 1,3-dehydroadamantane. Selective N-adamantylation of pyrazoles. Russian Journal of Organic Chemistry, 2011, 47, 150-151.	0.3	6
62	Reaction of 1,3-dehydroadamantane with organic isocyanates. Russian Journal of Organic Chemistry, 2011, 47, 606-607.	0.3	12
63	Impregnation of abrasive tools with foaming agents. Russian Engineering Research, 2011, 31, 1160-1163.	0.2	11
64	Synthesis and toxicity of 1,3-dehydroadamantane. Pharmaceutical Chemistry Journal, 2011, 45, 151-152.	0.3	0
65	Reaction of [3.3.1]propellanes with diaryl diselenides. Russian Journal of Organic Chemistry, 2010, 46, 929-930.	0.3	2
66	Synthesis of 4-(1-adamantyl)-3-polyfluoromethyl-1H-pyrazoles. Russian Journal of Organic Chemistry, 2010, 46, 1178-1180.	0.3	1
67	Method of synthesizing adamantyl-substituted phenols based on 1,3-dehydroadamantane. Russian Journal of Applied Chemistry, 2009, 82, 691-692.	0.1	5
68	Uncommon alkylation by 1,3-dehydroadamantane of polycyclic hydrocarbons. Russian Journal of Organic Chemistry, 2009, 45, 1721-1722.	0.3	3
69	Adamantylation of azoles by 1,3-dehydroadamantane: I. N-adamantylation of imidazoles by 1,3-dehydroadamantane. Russian Journal of Organic Chemistry, 2009, 45, 1732-1733.	0.3	8
70	Reaction of 1,3-dehydroadamantane with camphor and isocamphanone. Russian Journal of Organic Chemistry, 2009, 45, 1864-1865.	0.3	4
71	Adamantyl-containing fluorinated 1,3-diketones. Russian Journal of Organic Chemistry, 2008, 44, 1157-1160.	0.3	12
72	Uncommon reaction of 1,3-dehydroadamantane with 3-bromo-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one. Russian Journal of Organic Chemistry, 2007, 43, 1254-1255.	0.3	1

#	Article	IF	CITATIONS
73	Synthesis of Adamantyl-Substituted Keto Esters. ChemInform, 2004, 35, no.	0.1	0
74	Synthesis of Adamantyl-substituted Keto Esters. Russian Journal of Organic Chemistry, 2003, 39, 1668-1669.	0.3	14
75	Synthesis of Adamantyl-Containing Cyclic β-Diketones (III) ChemInform, 2003, 34, no.	0.1	0
76	Preparation of α-Adamantyl-substituted Aliphatic Ketones. Russian Journal of Organic Chemistry, 2002, 38, 295-296.	0.3	13
77	Synthesis of Adamantyl-Containing Cyclic β-Diketones. Russian Journal of Organic Chemistry, 2002, 38, 1377-1377.	0.3	10
78	Experimental and quantum-chemical investigation of thermolysis of adamantyl-substituted organosilicon peroxides. Russian Chemical Bulletin, 1998, 47, 1280-1283.	0.4	0