William H J Strosnider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796708/publications.pdf

Version: 2024-02-01

28 493 13 22
papers citations h-index g-index

28 28 28 424
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mine drainage precipitates attenuate and conceal wastewater-derived phosphate pollution in stream water. Science of the Total Environment, 2022, 815, 152672.	8.0	4
2	Pollutant co-attenuation via in-stream interactions between mine drainage and municipal wastewater. Water Research, 2022, 214, 118173.	11.3	5
3	Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. Chemosphere, 2021, 263, 127946.	8.2	18
4	Removal and reuse of phosphorus from plant nursery irrigation return water with reclaimed iron oxides. Ecological Engineering, 2021, 160, 106153.	3.6	5
5	Water quality impacts of in-stream mine tailings on a headwater tributary of the Rio Pilcomayo, Potos $\tilde{A}_{\bar{\imath}}$ Bolivia. Applied Geochemistry, 2020, 113, 104464.	3.0	10
6	Potential Implications of Acid Mine Drainage and Wastewater Cotreatment on Solids Handling: A Review. Journal of Environmental Engineering, ASCE, 2020, 146, .	1.4	10
7	Abatement of circumneutral mine drainage by Co-treatment with secondary municipal wastewater. Journal of Environmental Management, 2020, 271, 110982.	7.8	12
8	A Snapshot of Coal Mine Drainage Discharge Limits for Conductivity, Sulfate, and Manganese across the Developed World. Mine Water and the Environment, 2020, 39, 165-172.	2.0	9
9	Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China. Chemosphere, 2019, 234, 777-788.	8.2	28
10	Preliminary Assessment of Ferrate Treatment of Metals in Acid Mine Drainage. Journal of Environmental Quality, 2019, 48, 1549-1556.	2.0	12
11	Assessment of sulphate and iron reduction rates during reactor start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 76-84.	0.9	8
12	Passive Biological Treatment of Mine Water to Reduce Conductivity: Potential Designs, Challenges, and Research Needs. Journal of Environmental Quality, 2017, 46, 1-9.	2.0	2
13	Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters. Journal of Hydrology, 2017, 551, 245-252.	5.4	47
14	Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Environmental Geochemistry and Health, 2017, 39, 681-700.	3.4	21
15	Possible Health Effects of Living in Proximity to Mining Sites Near PotosÃ, Bolivia. Journal of Occupational and Environmental Medicine, 2015, 57, 543-551.	1.7	8
16	Removal of Less Commonly Addressed Metals via Passive Cotreatment. Journal of Environmental Quality, 2015, 44, 704-710.	2.0	8
17	Carbon Dioxide Dynamics and Sequestration in Mine Water and Waste. Mine Water and the Environment, 2015, 34, 3-9.	2.0	7
18	Evaluating locally available organic substrates for vertical flow passive treatment cells at Cerro Rico de PotosÃ, Bolivia. Environmental Earth Sciences, 2014, 72, 731-741.	2.7	5

#	Article	IF	CITATIONS
19	Unabated acid mine drainage from Cerro Rico de Potos \tilde{A}_7 Bolivia: uncommon constituents of concern impact the Rio Pilcomayo headwaters. Environmental Earth Sciences, 2014, 71, 3223-3234.	2.7	16
20	Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: Impacts at a SW China coalfield. Science of the Total Environment, 2014, 487, 123-129.	8.0	19
21	Assessing domestic water quality in Belén municipality, Iquitos, Peru. Journal of Water Sanitation and Hygiene for Development, 2014, 4, 391-399.	1.8	5
22	Hydrogeochemical characteristics of streams with and without acid mine drainage impacts: A paired catchment study in karst geology, SW China. Journal of Hydrology, 2013, 504, 115-124.	5 . 4	34
23	Passive co-treatment of Zn-rich acid mine drainage and raw municipal wastewater. Journal of Geochemical Exploration, 2013, 125, 110-116.	3.2	36
24	Biochemical oxygen demand and nutrient processing in a novel multi-stage raw municipal wastewater and acid mine drainage passive co-treatment system. Water Research, 2011, 45, 1079-1086.	11.3	38
25	Novel Passive Coâ€Treatment of Acid Mine Drainage and Municipal Wastewater. Journal of Environmental Quality, 2011, 40, 206-213.	2.0	30
26	Alkalinity Generation in a Novel Multi-stage High-strength Acid Mine Drainage and Municipal Wastewater Passive Co-treatment System. Mine Water and the Environment, 2011, 30, 47-53.	2.0	22
27	Acid mine drainage at Cerro Rico de PotosÃ-II: severe degradation of the Upper Rio Pilcomayo watershed. Environmental Earth Sciences, 2011, 64, 911-923.	2.7	35
28	Acid mine drainage at Cerro Rico de PotosÃ-I: unabated high-strength discharges reflect a five century legacy of mining. Environmental Earth Sciences, 2011, 64, 899-910.	2.7	39