Norbert Laszlo Jost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restricting Excessive Cardiac Action Potential and QT Prolongation. Circulation, 2005, 112, 1392-1399.	1.6	346

Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5200697 Td (

3	Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. Journal of Physiology, 2013, 591, 4189-4206.	1.3	122
4	Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports, 2018, 10, 822-833.	2.3	92
5	Slow Delayed Rectifier Potassium Current (IKs) and the Repolarization Reserve. Annals of Noninvasive Electrocardiology, 2007, 12, 64-78.	0.5	74
6	Human Electrophysiological and Pharmacological Properties of XEN-D0101. Journal of Cardiovascular Pharmacology, 2013, 61, 408-415.	0.8	52
7	The Effect of a Novel Highly Selective Inhibitor of the Sodium/Calcium Exchanger (NCX) on Cardiac Arrhythmias in In Vitro and In Vivo Experiments. PLoS ONE, 2016, 11, e0166041.	1.1	47
8	Evaluation of Possible Proarrhythmic Potency: Comparison of the Effect of Dofetilide, Cisapride, Sotalol, Terfenadine, and Verapamil on hERG and Native <i>I</i> Kr Currents and on Cardiac Action Potential. Toxicological Sciences, 2019, 168, 365-380.	1.4	42
9	A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominantâ€negative mutation of the <i>KCNE1</i> gene. British Journal of Pharmacology, 2016, 173, 2046-2061.	2.7	38
10	Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration?. Basic Research in Cardiology, 2009, 104, 33-41.	2.5	37
11	Class I/B antiarrhythmic property of ranolazine, a novel antianginal agent, in dog and human cardiac preparations. European Journal of Pharmacology, 2011, 662, 31-39.	1.7	31
12	Rabbit models as tools for preclinical cardiac electrophysiological safety testing: Importance of repolarization reserve. Progress in Biophysics and Molecular Biology, 2016, 121, 157-168.	1.4	26
13	Block of Na + /Ca 2+ exchanger by SEA0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation. European Journal of Pharmacology, 2016, 788, 286-293.	1.7	13
14	Discovery and characterization of ORMâ€11372, a novel inhibitor of the sodium alcium exchanger with positive inotropic activity. British Journal of Pharmacology, 2020, 177, 5534-5554.	2.7	13
15	Novel Na+/Ca2+ Exchanger Inhibitor ORM-10962 Supports Coupled Function of Funny-Current and Na+/Ca2+ Exchanger in Pacemaking of Rabbit Sinus Node Tissue. Frontiers in Pharmacology, 2019, 10, 1632.	1.6	13
16	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	1.7	12
17	The electrophysiological effects of cannabidiol on action potentials and transmembrane potassium currents in rabbit and dog cardiac ventricular preparations. Archives of Toxicology, 2021, 95, 2497-2505.	1.9	11
18	Inotropic effect of NCX inhibition depends on the relative activity of the reverse NCX assessed by a novel inhibitor ORM-10962 on canine ventricular myocytes. European Journal of Pharmacology, 2018, 818, 278-286.	1.7	10

Norbert Laszlo Jost

#	Article	IF	CITATIONS
19	Electrical Restitution and Its Modifications by Antiarrhythmic Drugs in Undiseased Human Ventricular Muscle. Frontiers in Pharmacology, 2020, 11, 479.	1.6	10
20	Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 1303.	1.7	10
21	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	1.6	8
22	Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart. Canadian Journal of Physiology and Pharmacology, 2015, 93, 803-810.	0.7	7
23	New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 926.	1.7	6
24	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	1.4	4
25	Long-Term Endurance Exercise Training Alters Repolarization in a New Rabbit Athlete's Heart Model. Frontiers in Physiology, 2021, 12, 741317.	1.3	4
26	Identification and functional characterisation of a novel <i>KCNJ2</i> mutation, Val302del, causing Andersen–Tawil syndrome. Canadian Journal of Physiology and Pharmacology, 2015, 93, 569-575.	0.7	3
27	In vivo and cellular antiarrhythmic and cardiac electrophysiological effects of desethylamiodarone in dog cardiac preparations. British Journal of Pharmacology, 2022, , .	2.7	2
28	Cardiac electrophysiological effects of ibuprofen in dog and rabbit ventricular preparations: possible implication to enhanced proarrhythmic risk. Canadian Journal of Physiology and Pharmacology, 2021, 99, 102-109.	0.7	1
29	Muscarinic agonists inhibit the ATP-dependent potassium current and suppress the ventricle–Purkinje action potential dispersion. Canadian Journal of Physiology and Pharmacology, 2021, 99, 247-253.	0.7	1
30	Antiarrhythmic and cardiac electrophysiological effects of SZV-270, a novel compound with combined Class I/B and Class III effects, in rabbits and dogs. Canadian Journal of Physiology and Pharmacology, 2021, 99, 89-101.	0.7	1
31	Endurance training-induced cardiac remodeling in a guinea pig athlete's heart model. Canadian Journal of Physiology and Pharmacology, 0, , .	0.7	1
32	Cardioprotection and arrhythmias, Part I. Canadian Journal of Physiology and Pharmacology, 2015, 93, v-v.	0.7	0
33	Cardioprotection and arrhythmias, Part 2. Canadian Journal of Physiology and Pharmacology, 2015, 93, v-v.	0.7	0
34	The Investigation of Combined Na ⁺ /Ca ²⁺ Exchanger and the L-type Ca ²⁺ - Channel Inhibition in Langendorff-Perfused Isolated Guinea Pig Hearts. Revista Romana De Cardiologie, 2021, 31, 537-545.	0.0	0