Tina Romeis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2796022/publications.pdf Version: 2024-02-01

TINA POMEIS

#	Article	IF	CITATIONS
1	Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8744-8749.	7.1	585
2	Advances and current challenges in calcium signaling. New Phytologist, 2018, 218, 414-431.	7.3	423
3	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
4	Calcium-Dependent Protein Kinases: Hubs in Plant Stress Signaling and Development. Plant Physiology, 2013, 163, 523-530.	4.8	341
5	Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 2011, 4, ra32.	3.6	338
6	Resistance Gene-Dependent Activation of a Calcium-Dependent Protein Kinase in the Plant Defense Response. Plant Cell, 2000, 12, 803-815.	6.6	253
7	The Calcium-Dependent Protein Kinase CPK28 Buffers Plant Immunity and Regulates BIK1 Turnover. Cell Host and Microbe, 2014, 16, 605-615.	11.0	208
8	Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 2004, 55, 135-147.	3.9	178
9	Ca ²⁺ signalling in plant immune response: from pattern recognition receptors to Ca ²⁺ decoding mechanisms. New Phytologist, 2014, 204, 782-790.	7.3	148
10	Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1582-1589.	4.1	146
11	Pollen Tube Growth Regulation by Free Anions Depends on the Interaction between the Anion Channel SLAH3 and Calcium-Dependent Protein Kinases CPK2 and CPK20. Plant Cell, 2013, 25, 4525-4543.	6.6	129
12	From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 2014, 20, 1-10.	7.1	110
13	CALCIUM-DEPENDENT PROTEIN KINASE5 Associates with the Truncated NLR Protein TIR-NBS2 to Contribute to <i>exo70B1-</i> Mediated Immunity. Plant Cell, 2017, 29, 746-759.	6.6	87
14	Tobacco Calcium-dependent Protein Kinases Are Differentially Phosphorylated in Vivo as Part of a Kinase Cascade That Regulates Stress Response. Journal of Biological Chemistry, 2010, 285, 9740-9748.	3.4	81
15	The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Growth Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis. Plant Cell, 2015, 27, 591-606.	6.6	76
16	The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signaling and Behavior, 2015, 10, e1018497.	2.4	73
17	The <i>Arabidopsis</i> exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytologist, 2020, 227, 529-544.	7.3	59
18	Tipâ€localized Ca ²⁺ â€permeable channels control pollen tube growth via kinaseâ€dependent R― and Sâ€type anion channel regulation. New Phytologist, 2018, 218, 1089-1105.	7.3	52

TINA ROMEIS

#	Article	IF	CITATIONS
19	Calciumâ€dependent protein kinase 5 links calcium signaling with <i>N</i> â€hydroxyâ€ <scp>l</scp> â€pipecolic acid―and <i><scp>SARD</scp>1</i> â€dependent immune memory in systemic acquired resistance. New Phytologist, 2020, 225, 310-325.	7.3	46
20	Stable isotope labeling of phosphopeptides for multiparallel kinase target analysis and identification of phosphorylation sites. Rapid Communications in Mass Spectrometry, 2003, 17, 1579-1584.	1.5	45
21	An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca ²⁺ and H ⁺ reveals new insights into ion signaling in plants. New Phytologist, 2021, 230, 2292-2310.	7.3	42
22	Protein kinaseâ€mediated signalling in priming: Immune signal initiation, propagation, and establishment of longâ€ŧerm pathogen resistance in plants. Plant, Cell and Environment, 2019, 42, 904-917.	5.7	34
23	Calcium-Dependent Protein Kinase CPK1 Controls Cell Death by In Vivo Phosphorylation of Senescence Master Regulator ORE1. Plant Cell, 2020, 32, 1610-1625.	6.6	33
24	Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnology Journal, 2021, 19, 74-86.	8.3	31
25	What's new in protein kinase/phosphatase signalling in the control of plant immunity?. Essays in Biochemistry, 2022, 66, 621-634.	4.7	13
26	Plant Immune Memory in Systemic Tissue Does Not Involve Changes in Rapid Calcium Signaling. Frontiers in Plant Science, 2021, 12, 798230.	3.6	9
27	CDPK Activation in PRR Signaling. Methods in Molecular Biology, 2017, 1578, 173-183.	0.9	6
28	An epiphany for plant resistance proteins and its impact on calciumâ€based immune signalling. New Phytologist, 2022, 234, 769-772.	7.3	4
29	N-hydroxypipecolic acid: a general and conserved activator of systemic plant immunity. Journal of Experimental Botany, 2020, 71, 6193-6196.	4.8	3
30	Sp(l)icing up PepR signalling. Nature Plants, 2020, 6, 912-913.	9.3	2