Johannes Kiefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795705/publications.pdf

Version: 2024-02-01

87723 118652 4,984 195 38 62 citations g-index h-index papers 199 199 199 4946 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Experimental Vibrational Study of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Ethyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium Ethylsulfate. Applied Spectroscopy, 2007, 61, 1306-1311.	1.2	281
2	The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Physical Chemistry Chemical Physics, 2010, 12, 14153.	1.3	278
3	Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 147-151.	2.0	170
4	Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. Journal of Physical Chemistry C, 2016, 120, 3295-3304.	1.5	155
5	Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car–Parrinello Simulations. Journal of Physical Chemistry B, 2015, 119, 14780-14789.	1.2	129
6	Laser diagnostics and minor species detection in combustion using resonant four-wave mixing. Progress in Energy and Combustion Science, 2011, 37, 525-564.	15.8	121
7	Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Measurement Science and Technology, 2008, 19, 085408.	1.4	120
8	Molecular Interactions in 1-Ethyl-3-methylimidazolium Acetate Ion Pair: A Density Functional Study. Journal of Physical Chemistry A, 2009, 113, 10397-10404.	1.1	97
9	Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods, 2020, 9, 10.	1.9	93
10	Molecular Structure and Interactions in the Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)imide. Journal of Physical Chemistry A, 2014, 118, 2547-2557.	1.1	90
11	Concentrationâ€Dependent Hydrogenâ€Bonding Effects on the Dimethyl Sulfoxide Vibrational Structure in the Presence of Water, Methanol, and Ethanol. ChemPhysChem, 2010, 11, 630-637.	1.0	80
12	Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combustion and Flame, 2008, 154, 802-818.	2.8	78
13	Electronic Structure and Normal Vibrations of the 1-Ethyl-3-methylimidazolium Ethyl Sulfate Ion Pair. Journal of Physical Chemistry A, 2011, 115, 3551-3558.	1.1	76
14	Recent Advances in the Characterization of Gaseous and Liquid Fuels by Vibrational Spectroscopy. Energies, 2015, 8, 3165-3197.	1.6	69
15	Screening Precursor–Solvent Combinations for Li ₄ Ti ₅ O ₁₂ Energy Storage Material Using Flame Spray Pyrolysis. ACS Applied Materials & Diterfaces, 2017, 9, 37760-37777.	4.0	68
16	The Peculiar Nature of Molecular Interactions between an Imidazolium Ionic Liquid and Acetone. ChemPhysChem, 2012, 13, 1213-1220.	1.0	65
17	Molecular Structure and Interactions in the Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate. Journal of Physical Chemistry A, 2016, 120, 6274-6286.	1.1	65
18	Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. Journal of Molecular Structure, 2012, 1018, 45-53.	1.8	64

#	Article	IF	Citations
19	Influence of Water on the Chemistry and Structure of the Metal–Organic Framework Cu ₃ (btc) ₂ . Journal of Physical Chemistry C, 2016, 120, 17323-17333.	1.5	64
20	Laser-induced breakdown flame thermometry. Combustion and Flame, 2012, 159, 3576-3582.	2.8	63
21	Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames. Proceedings of the Combustion Institute, 2011, 33, 831-838.	2.4	62
22	Characterization of gasoline/ethanol blends by infrared and excess infrared spectroscopy. Fuel, 2015, 141, 136-142.	3.4	62
23	Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N_2 thermometry. Optics Letters, 2009, 34, 3755.	1.7	61
24	Infrared Spectroscopic Analysis of the Inorganic Deposits from Water in Domestic and Technical Heat Exchangers. Energies, 2018, 11, 798.	1.6	61
25	Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Applied Physics B: Lasers and Optics, 2011, 103, 229-236.	1.1	56
26	Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames. Proceedings of the Combustion Institute, 2007, 31, 727-735.	2.4	55
27	Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering. Applied Spectroscopy, 2017, 71, 341-366.	1.2	52
28	Quantitative Analysis of Alphaâ€ <scp>D</scp> â€glucose in an Ionic Liquid by Using Infrared Spectroscopy. ChemPhysChem, 2008, 9, 1317-1322.	1.0	51
29	Determination of gas composition in a biogas plant using a Raman-based sensor system. Measurement Science and Technology, 2014, 25, 075503.	1.4	49
30	The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide. Journal of Molecular Liquids, 2020, 299, 112159.	2.3	48
31	Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at $1\hat{a} \in 11$ bar. Applied Optics, 2016, 55, 8042.	2.1	48
32	Local fuel concentration measurements for mixture formation diagnostics using diffraction by laserâ€induced gratings in comparison to spontaneous Raman scattering. Journal of Raman Spectroscopy, 2008, 39, 711-721.	1.2	46
33	Combined shifted-excitation Raman difference spectroscopy and support vector regression for monitoring the algal production of complex polysaccharides. Analyst, The, 2013, 138, 5639.	1.7	46
34	The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combustion and Flame, 2020, 215, 389-400.	2.8	46
35	Non-intrusive gas-phase temperature measurements inside a porous burner using dual-pump CARS. Proceedings of the Combustion Institute, 2009, 32, 3123-3129.	2.4	45
36	Ultrafast Vibrational Dynamics and Energy Transfer in Imidazolium Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 6136-6141.	6.6	45

#	Article	IF	Citations
37	Characterization of a fast gas analyzer based on Raman scattering for the analysis of synthesis gas. Review of Scientific Instruments, 2010, 81, 125104.	0.6	44
38	Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements. Optics Letters, 2006, 31, 1908.	1.7	39
39	Structure of the Room-Temperature Ionic Liquid 1-Hexyl-3-methylimidazolium Hydrogen Sulfate: Conformational Isomerism. Journal of Physical Chemistry A, 2010, 114, 6713-6720.	1.1	37
40	Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combustion and Flame, 2014, 161, 1566-1574.	2.8	37
41	Influence of methyl and propyl groups on the vibrational spectra of two imidazolium ionic liquids and their non-ionic precursors. Journal of Molecular Structure, 2017, 1134, 582-590.	1.8	36
42	Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses. Optics Letters, 2010, 35, 2040.	1.7	35
43	Planar laser-induced fluorescence of HCO for instantaneous flame front imaging in hydrocarbon flames. Proceedings of the Combustion Institute, 2009, 32, 921-928.	2.4	34
44	Qualitative Analysis of Traditional Italian Dishes: FTIR Approach. Sustainability, 2018, 10, 4112.	1.6	34
45	Attenuated Total Reflection Infrared (ATR-IR) Spectroscopy of a Water-in-Oil Emulsion. Applied Spectroscopy, 2011, 65, 1024-1028.	1.2	32
46	Hydrogen Bonding in Mixtures of Dimethyl Sulfoxide and Cosolvents. Current Physical Chemistry, 2011, 1, 340-351.	0.1	32
47	Investigation of the combustion process in an auxiliary heating system using dual-pump CARS. Journal of Raman Spectroscopy, 2006, 37, 633-640.	1.2	31
48	Mid-infrared polarization spectroscopy of C2H2: Non-intrusive spatial-resolved measurements of polyatomic hydrocarbon molecules for combustion diagnostics. Proceedings of the Combustion Institute, 2007, 31, 817-824.	2.4	30
49	Vibrational signatures of anionic cyano groups in imidazolium ionic liquids. Vibrational Spectroscopy, 2017, 91, 141-146.	1.2	30
50	Chemistry of iron nitrate-based precursor solutions for spray-flame synthesis. Physical Chemistry Chemical Physics, 2019, 21, 24793-24801.	1.3	30
51	Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction. Measurement Science and Technology, 2010, 21, 065303.	1.4	29
52	Shearlet-based detection of flame fronts. Experiments in Fluids, 2016, 57, 1.	1.1	29
53	Analysis of single malt Scotch whisky using Raman spectroscopy. Analytical Methods, 2017, 9, 511-518.	1.3	29
54	The effect of introducing an ether group into an imidazolium-based ionic liquid in binary mixtures with DMSO. Physical Chemistry Chemical Physics, 2020, 22, 15734-15742.	1.3	29

#	Article	IF	Citations
55	Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical. Optics Communications, 2007, 270, 347-352.	1.0	28
56	Infrared Spectroscopy of a Wilkinson Catalyst in a Roomâ€Temperature Ionic Liquid. ChemPhysChem, 2008, 9, 2207-2213.	1.0	27
57	Characterization of Escherichia coli suspensions using UV/Vis/NIR absorption spectroscopy. Analytical Methods, 2010, 2, 123-128.	1.3	27
58	Intermediate phases during solid to liquid transitions in long-chain n-alkanes. Physical Chemistry Chemical Physics, 2017, 19, 13941-13950.	1.3	27
59	Phase-selective laser–induced breakdown spectroscopy in flame spray pyrolysis for iron oxide nanoparticle synthesis. Proceedings of the Combustion Institute, 2021, 38, 1711-1718.	2.4	27
60	Determination of Glucose and Cellobiose Dissolved in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate Using Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2009, 63, 1041-1049.	1.2	26
61	Application of Infrared Spectroscopy for Functional Compounds Evaluation in Olive Oil: A Current Snapshot. Journal of Spectroscopy, 2019, 2019, 1-11.	0.6	26
62	Numerical computations and optical diagnostics of unsteady partially premixed methane/air flames. Combustion and Flame, 2010, 157, 915-924.	2.8	24
63	Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy. Journal of Molecular Structure, 2010, 965, 121-124.	1.8	24
64	Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface. Biosensors, 2016, 6, 13.	2.3	24
65	Comparison of Raman and IR spectroscopy for quantitative analysis of gasoline/ethanol blends. Fuel, 2016, 166, 488-494.	3.4	24
66	Effects of C(2) Methylation on Thermal Behavior and Interionic Interactions in Imidazolium-Based Ionic Liquids with Highly Symmetric Anions. Applied Sciences (Switzerland), 2018, 8, 1043.	1.3	24
67	Characterization of Nanoparticles by Solvent Infrared Spectroscopy. Analytical Chemistry, 2015, 87, 12313-12317.	3.2	23
68	Time-resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings. Optics Express, 2006, 14, 12994.	1.7	22
69	Simultaneous measurements of fuel vapor concentration and temperature in a flashâ€boiling propane jet using laserâ€induced gratings. Journal of Raman Spectroscopy, 2013, 44, 1356-1362.	1.2	22
70	Ethanol droplet formation, dynamics and combustion mode in the flame of the SpraySyn-nozzle. Experiments in Fluids, 2019, 60, 1.	1.1	22
71	Surface and bulk porosity mapping of polymer membranes using infrared spectroscopy. Journal of Membrane Science, 2014, 452, 152-156.	4.1	21
72	Synthesis, conductivity, and vibrational spectroscopy of tetraphenylphosphonium bis(trifluoromethanesulfonyl)imide. Journal of Molecular Structure, 2017, 1146, 203-212.	1.8	21

#	Article	IF	CITATIONS
73	Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 189, 57-65.	2.0	21
74	Clusters of the Ionic Liquid 1â€Hydroxyethylâ€3â€methylimidazolium Picrate: From Theoretical Prediction in the Gas Phase to Experimental Evidence in the Solid State. ChemPhysChem, 2018, 19, 3061-3068.	1.0	21
7 5	Light-emitting diode based shifted-excitation Raman difference spectroscopy (LED-SERDS). Analyst, The, 2013, 138, 6258.	1.7	20
76	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (C ₄ mimTfO) and Molecular Solvents: <i>n</i> -Alkyl Alcohols and Water. Journal of Physical Chemistry B, 2018, 122, 6017-6032.	1.2	20
77	OHâ€thermometry using laser polarization spectroscopy and laserâ€induced fluorescence spectroscopy in the OH Aâ€X (1,0) band. Journal of Raman Spectroscopy, 2009, 40, 828-835.	1.2	19
78	Determination of Physicochemical Parameters of Ionic Liquids and Their Mixtures with Solvents Using Laser-Induced Gratings. Journal of Physical Chemistry B, 2011, 115, 8528-8533.	1.2	19
79	Simultaneous Measurement of Speed of Sound, Thermal Diffusivity, and Bulk Viscosity of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids Using Laser-Induced Gratings. Journal of Physical Chemistry B, 2014, 118, 14493-14501.	1.2	19
80	Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques. Journal of Physical Chemistry A, 2015, 119, 12797-12804.	1.1	19
81	Butanol as a potential biofuel: A spectroscopic study of its blends with n-decane and diesel. Fuel, 2018, 222, 312-318.	3.4	19
82	Laser-induced breakdown spectroscopy in a partially premixed turbulent jet flame. Measurement Science and Technology, 2013, 24, 075205.	1.4	18
83	Timeâ€resolved femtosecond CARS of the ionic liquid 1â€ethylâ€3â€methylimidazolium ethylsulfate. Journal of Raman Spectroscopy, 2015, 46, 722-726.	1.2	18
84	Mid-infrared laser-induced thermal grating spectroscopy in flames. Proceedings of the Combustion Institute, 2017, 36, 4515-4523.	2.4	18
85	Universal enantioselective discrimination by Raman spectroscopy. Analyst, The, 2015, 140, 1787-1790.	1.7	17
86	Simultaneous Acquisition of the Polarized and Depolarized Raman Signal with a Single Detector. Analytical Chemistry, 2017, 89, 5725-5728.	3.2	16
87	Nutritional composition and dietary intake of composite dishes traditionally consumed in Italy. Journal of Food Composition and Analysis, 2019, 77, 115-124.	1.9	16
88	Interplay of Different Moieties in the Binary System 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate/Water Studied by Raman Spectroscopy and Density Functional Theory Calculations. Journal of Physical Chemistry B, 2019, 123, 4004-4016.	1.2	16
89	Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy. Applied Optics, 2015, 54, 4221.	2.1	15
90	Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range. Applied Spectroscopy, 2016, 70, 1034-1043.	1,2	15

#	Article	IF	Citations
91	Infrared Spectroscopy for Studying Structure and Aging Effects in Rhamnolipid Biosurfactants. Applied Sciences (Switzerland), 2017, 7, 533.	1.3	15
92	Influence of the alkyl chain on the vibrational structure and interionic interactions in 1-alkyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids. Journal of Molecular Liquids, 2018, 255, 413-418.	2.3	15
93	Identification of Passion Fruit Oil Adulteration by Chemometric Analysis of FTIR Spectra. Molecules, 2019, 24, 3219.	1.7	15
94	Microexplosions of multicomponent drops in spray flames. Combustion and Flame, 2022, 240, 112043.	2.8	15
95	Dual-Wavelength Raman Spectroscopy Approach for Studying Fluid-Phase Equilibria Using a Single Laser. Applied Spectroscopy, 2010, 64, 687-689.	1.2	14
96	Dielectric Relaxation of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate: Microwave and Far-IR Properties. Journal of Physical Chemistry B, 2017, 121, 4845-4852.	1.2	14
97	Cluster Formation through Hydrogen Bond Bridges across Chloride Anions in a Hydroxylâ€Functionalized Ionic Liquid. ChemPhysChem, 2019, 20, 936-940.	1.0	14
98	Entwicklung eines Echtzeitanalyse-Systems zur Charakterisierung von Brenngasgemischen in Gasturbinenkraftwerken. Chemie-Ingenieur-Technik, 2011, 83, 247-253.	0.4	13
99	Instantaneous shiftedâ€excitation Raman difference spectroscopy (iSERDS). Journal of Raman Spectroscopy, 2014, 45, 980-983.	1.2	13
100	Molecular-Level Insights into the Microstructure of a Hydrated and Nanoconfined Deep Eutectic Solvent. Journal of Physical Chemistry B, 2019, 123, 3359-3371.	1.2	13
101	Comparison of existing laser-induced breakdown thermometry techniques along with a time-resolved breakdown approach. Applied Optics, 2019, 58, 3950.	0.9	13
102	Polarizationâ€resolved highâ€resolution Raman spectroscopy with a lightâ€emitting diode. Journal of Raman Spectroscopy, 2013, 44, 1625-1627.	1.2	12
103	Probing the balance of attraction and repulsion in binary mixtures of dimethyl sulfoxide and n-alcohols. Physical Chemistry Chemical Physics, 2013, 15, 1093-1096.	1.3	12
104	Molecular Solution Behaviour of an Intermediate Biofuel Feedstock: Acetone–Butanol–Ethanol (ABE). ChemPhysChem, 2015, 16, 3846-3858.	1.0	12
105	Quantitative enantioselective Raman spectroscopy. Analyst, The, 2015, 140, 5012-5018.	1.7	12
106	Removal of Confined Ionic Liquid from a Metal Organic Framework by Extraction with Molecular Solvents. Journal of Physical Chemistry C, 2017, 121, 10577-10586.	1.5	12
107	Vapor Liquid Equilibria of 1-Ethyl-3-methylimidazolium Triflate (C2mimTfO) and n-Alkyl Alcohol Mixtures. Journal of Physical Chemistry B, 2019, 123, 6076-6089.	1.2	12
108	Detection of Flame Radicals Using Light-Emitting Diodes. Applied Spectroscopy, 2010, 64, 1330-1334.	1.2	11

#	Article	IF	Citations
109	Chemical Composition Monitoring in a Batch Distillation Process Using Raman Spectroscopy. Industrial & Distillation Process Using Raman Spectroscopy.	1.8	11
110	Determination of the Raman depolarization ratio in optically active samples. Analytical Methods, 2013, 5, 797-800.	1.3	11
111	Influence of carbonâ€coated iron nanoparticles on the Raman spectrum of liquid ethanol. Journal of Raman Spectroscopy, 2015, 46, 1124-1128.	1.2	11
112	Enantioselective Raman spectroscopy (esR) for distinguishing between the enantiomers of 2-butanol. Analyst, The, 2018, 143, 3040-3048.	1.7	11
113	Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Applied Sciences (Switzerland), 2021, 11, 6156.	1.3	11
114	Quantification of the interactions in halide-anion-based imidazolium ionic liquids. Journal of Ionic Liquids, 2022, 2, 100032.	1.0	11
115	Advanced instantaneous shiftedâ€excitation Raman difference spectroscopy (iSERDS) using a laser pointer. Journal of Raman Spectroscopy, 2016, 47, 1049-1055.	1.2	10
116	Influence of the alkyl side-chain length on the ultrafast vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (C _n mimNTf ₂) ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 15988-15995.	1.3	10
117	Infrared spectroscopy of the symmetric branched isomers of n-heptanol. Journal of Molecular Liquids, 2017, 244, 528-532.	2.3	10
118	Particle image velocimetry in refractive index fields of combustion flows. Experiments in Fluids, 2019, 60, 1.	1.1	10
119	An Innovative and Integrated Food Research Approach: spectroscopy applications to milk and a case study of a milk-based dish. Brazilian Journal of Analytical Chemistry, 2018, 5, 12-27.	0.3	10
120	Unsupervised Screening of Vibrational Spectra by Principal Component Analysis for Identifying Molecular Clusters. ChemPhysChem, 2018, 19, 795-800.	1.0	9
121	Optical Spectroscopy for Analysis and Monitoring of Metalworking Fluids. Applied Spectroscopy, 2018, 72, 1790-1797.	1.2	9
122	Four-wave mixing with non-resonant pump and resonant probe for OH detection in flames. Applied Physics B: Lasers and Optics, 2008, 92, 287-293.	1.1	8
123	Spectral interferences from formaldehyde in CH PLIF flame front imaging with broadband B-X excitation. Combustion and Flame, 2011, 158, 583-585.	2.8	8
124	Effect of Isomerism on the Liquid–Liquid Phase Behavior of Mixtures of 1-Alkyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)amide Ionic Liquids with Heptanol. Journal of Chemical & Engineering Data, 2019, 64, 2395-2405.	1.0	8
125	Revisiting the Liquid–Liquid Phase Behavior of n-Alkanes and Ethanol. Journal of Physical Chemistry B, 2020, 124, 156-172.	1.2	8
126	Vapor–Liquid Equilibria of the Ionic Liquid 1-Hexyl-3-methylimidazolium Triflate (C6mimTfO) with n-Alkyl Alcohols. Industrial & mp; Engineering Chemistry Research, 2020, 59, 5142-5157.	1.8	8

#	Article	IF	CITATIONS
127	Multiple parameter monitoring in a direct methanol fuel cell. Measurement Science and Technology, 2012, 23, 045602.	1.4	7
128	Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis. Applied Spectroscopy, 2017, 71, 1127-1133.	1.2	7
129	State-of-the-Art Infrared Applications in Drugs, Dietary Supplements, and Nutraceuticals. Journal of Spectroscopy, 2020, 2020, 1-2.	0.6	7
130	Two-photon stimulated Raman excitation of thermal laser-induced gratings in molecular gases using broadband radiation of a single laser. Optics Express, 2008, 16, 18379.	1.7	6
131	Shearlet-based edge detection: flame fronts and tidal flats. , 2015, , .		6
132	Spectroscopic and computational insights into the ion–solvent interactions in hydrated aprotic and protic ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 20791-20804.	1.3	6
133	Liquid–Liquid Phase Behavior of Solutions of 1,3-Diethylimidazolium Bis((trifluoromethyl)sulfonyl)amide in <i>n</i> Alkyl Alcohols. Journal of Chemical & mp; Engineering Data, 2020, 65, 1345-1357.	1.0	6
134	Advances in nonlinear optical spectroscopies: a historical perspective of developments and applications presented at ECONOS. Journal of Raman Spectroscopy, 2016, 47, 1111-1123.	1.2	5
135	Polarization-controlled optical ring cavity (PORC) tunable pulse stretcher. Optics Communications, 2016, 372, 98-105.	1.0	5
136	Numerical model for predicting experimental effects in enantioselective Raman spectroscopy. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	5
137	Dual-Wavelength Raman Fusion Spectroscopy. Analytical Chemistry, 2019, 91, 1764-1767.	3.2	5
138	Automatic Lowâ€Cost Method to Determine the Solubility of Liquidâ€Liquid Mixtures by Continuousâ€Flow Cloud Point Titration. Chemical Engineering and Technology, 2014, 37, 1736-1740.	0.9	4
139	Comment on "Red/blue shifting hydrogen bonds in acetonitrile – Dimethyl sulphoxide solutions: FTIR and theoretical studies―DOI: 10.1016/j.molstruc.2017.03.036. Journal of Molecular Structure, 2017, 1143, 487-488.	1.8	4
140	The Danger of Relying on Database Spectra. Applied Spectroscopy, 2018, 72, 1272-1276.	1.2	4
141	Revealing the impact of laser-induced breakdown on a gas flow. Measurement Science and Technology, 2020, 31, 027001.	1.4	4
142	Liquid–Liquid Phase Behavior of Diesel/Biofuel Blends: Ternary Mixtures of <i>n</i> -Hexadecane, 2,2,4,4,6,8,8-Heptamethylnonane, and Ethanol and the Binary Subsystems. Energy & Description (2021), 35, 4835-4847.	2.5	4
143	Principal component analysis to enhance enantioselective Raman spectroscopy. Analyst, The, 2019, 144, 2080-2086.	1.7	4
144	Broadband Two-Color Laser-Induced Incandescence Pyrometry Approach for Nanoparticle Characterization with Improved Sensitivity. Applied Spectroscopy, 2013, 67, 1098-1100.	1.2	3

#	Article	IF	Citations
145	Misalignment Effects in Laser-Induced Grating Experiments. Applied Spectroscopy, 2016, 70, 2025-2028.	1.2	3
146	Using a supercontinuum light source for instantaneous excitation-emission fluorescence mapping. Measurement Science and Technology, 2017, 28, 067001.	1.4	3
147	Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes. Applied Spectroscopy, 2018, 72, 947-955.	1.2	3
148	Chemometric analysis of enantioselective Raman spectroscopy data enables enantiomeric ratio determination. Analyst, The, 2019, 144, 5368-5372.	1.7	3
149	Passion Fruit (Passiflora spp.) Seed Oil. , 2019, , 577-603.		3
150	Laser-Induced Fluorescence Detection of Hot Molecular Oxygen in Flames Using an Alexandrite Laser. Applied Spectroscopy, 2014, 68, 1266-1273.	1.2	2
151	Combined spontaneous Stokes and coherent anti-Stokes Raman scattering spectroscopy. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	2
152	Quantitative measurement of complex substances dissolved in an ionic liquid using IR spectroscopy and chemometrics. TM Technisches Messen, 2017, 84, 32-37.	0.3	2
153	Optics and Spectroscopy for Fluid Characterization. Applied Sciences (Switzerland), 2018, 8, 828.	1.3	2
154	Dualâ€probe polarization spectroscopy as a concept for combustion diagnostics. Journal of Raman Spectroscopy, 2019, 50, 1283-1286.	1.2	2
155	Continuous method for determining the optical rotation in chiral media with internal referencing. Measurement Science and Technology, 2020, 31, 017005.	1.4	2
156	Thermometry by vibrational Raman spectroscopy of nitrogen: Identification and impact of spatial averaging effects. Journal of Raman Spectroscopy, 2021, 52, 1582-1588.	1.2	2
157	Theoretical investigation of global rainbow refractometry in spray combustion of polydisperse microdroplets. Journal of Modern Optics, 2021, 68, 259-266.	0.6	2
158	Laser-induced Breakdown Spectroscopy: A Simple but Versatile Tool for Combustion Diagnostics. , 2012, , .		2
159	Hydrogen Bonding in Mixtures of Dimethyl Sulfoxide and Cosolvents. Current Physical Chemistry, 2011, 1, 340-351.	0.1	2
160	Bestimmung des Diffusionskoeffizienten mittels Fließinjektionsanalyse. Chemie-Ingenieur-Technik, 2009, 81, 441-446.	0.4	1
161	Attenuated Total Reflection Infrared Difference Spectroscopy (ATR-IRDS) for Quantitative Reaction Monitoring. Applied Spectroscopy, 2012, 66, 685-688.	1.2	1
162	Development and applications of nonlinear optical spectroscopy: the joint 11th ECONOS and 31st ECW meeting in Aberdeen, Scotland. Journal of Raman Spectroscopy, 2013, 44, 1317-1318.	1.2	1

#	Article	IF	CITATIONS
163	Development and applications of nonlinear optical spectroscopy: 13th ECONOS/33rd ECW meeting in Dole (France). Journal of Raman Spectroscopy, 2015, 46, 677-678.	1.2	1
164	Development and applications of nonlinear optical spectroscopy: 14th ECONOS/34th ECW meeting in Leuven (Belgium). Journal of Raman Spectroscopy, 2016, 47, 1109-1110.	1.2	1
165	Development and applications of nonlinear optical spectroscopy: 15th ECONOS/35th ECW meeting in Gothenburg (Sweden). Journal of Raman Spectroscopy, 2017, 48, 1019-1019.	1.2	1
166	Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface. Applied Sciences (Switzerland), 2017, 7, 1229.	1.3	1
167	Development and applications of nonlinear optical spectroscopy: 16th ECONOS/36th ECW meeting in Jena (Germany). Journal of Raman Spectroscopy, 2018, 49, 1094-1095.	1.2	1
168	Strategies for suppressing elastically scattered laser light in ungated laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 267-270.	1.5	1
169	Development and applications of nonlinear optical spectroscopy: 17th ECONOS/37th ECW meeting in Milan (Italy). Journal of Raman Spectroscopy, 2019, 50, 1256-1259.	1.2	1
170	Ion Pairs of 1-Butyl-3-Methylimidazolium Triflate Do Not Dissociate in Propan-1-ol: A Vibrational Spectroscopic Viewpoint. Applied Sciences (Switzerland), 2020, 10, 1620.	1.3	1
171	ECONOS/ECW 2020: In memoriam Marcus Motzkus. Journal of Raman Spectroscopy, 2021, 52, 1497-1498.	1.2	1
172	Simultaneous acquisition of absorption and fluorescence spectra of strong absorbers utilizing an evanescent supercontinuum. Optics Letters, 2016, 41, 5684.	1.7	1
173	Temporally Resolved Characterization of Iron Nanoparticles Using a Time-Resolved Laser Technique. , 2009, , .		1
174	Laser applications to chemical, security, and environmental analysis: introduction to the feature issue. Applied Optics, 2019, 58, LAC1.	0.9	1
175	Combining laser-induced breakdown spectroscopy (LIBS) and particle imaging velocimetry (PIV) for flame diagnostics. , 2020, , .		1
176	Monitoring der chemischen Gasphasenabscheidung in einem Wirbelschichtreaktor. Chemie-Ingenieur-Technik, 2010, 82, 1421-1422.	0.4	0
177	Raman-Untersuchung des Hochdruckeinflusses auf die Molekularstruktur. Chemie-Ingenieur-Technik, 2010, 82, 1427-1428.	0.4	0
178	Interionic Interactions in Imidazolium-Based Ionic Liquids: The Role of the C2-Position Revealed by Raman Scattering and Supported by IR and NMR Spectroscopy. , 2010, , .		0
179	Local Composition and Temperature Determination in Laminar Flames by Laser-Induced Plasma Diagnostics., 2011,,.		0
180	Raman Difference Spectroscopy Approach for Monitoring of a Bioreactor., 2012,,.		0

#	Article	IF	CITATIONS
181	Aufnahme und Verarbeitung Raman-spektroskopischer Signale zur Æberwachung von Algenkultivierungen. Chemie-Ingenieur-Technik, 2012, 84, 1339-1339.	0.4	0
182	Raman Analytics for Complex Liquid Phase Systems. , 2014, , .		0
183	Studying biofuel aerosol evaporation rates with single particle manipulation. , 2014, , .		0
184	Absorption, emission, and schlieren imaging of liquid and gas flows using an LED and a webcam. TM Technisches Messen, 2018, 85, 292-301.	0.3	0
185	Raman-Spektroskopie als vielseitiges Werkzeug in der Lebensmittelanalytik. Chemie-Ingenieur-Technik, 2018, 90, 1241-1241.	0.4	0
186	Cold pressed paprika (Capsicum annuum) seed oil. , 2020, , 97-103.		0
187	Development and applications of nonlinear optical spectroscopy: 18th ECONOS/38th ECW meeting in Rouen (France). Journal of Raman Spectroscopy, 2020, 51, 1932-1933.	1.2	0
188	Konzeptionierung eines spektroskopischen Analyseverfahrens zur Untersuchung von Lebensmittelkomponenten. Chemie-Ingenieur-Technik, 2020, 92, 1303-1303.	0.4	0
189	Time-Resolved Picosecond Pure-Rotational Coherent anti-Stokes Raman Spectroscopy for Thermometry and Species Concentration in Flames. , 2010, , .		0
190	Gas Diagnostics by Laser-Induced Breakdown Spectroscopy Employing Polarization Filtering. , 2010, , .		0
191	Application of a dual-pump vibrational and pure rotational CARS system for temperature and multi-species measurements inside a porous burner. , 2010, , .		0
192	Gas-Phase and Combustion Diagnostics by Infrared Laser-Induced Grating Spectroscopy. , 2016, , .		0
193	Analysis into the Laser-induced Breakdown Signal from Combusting Solid-fuel Wood Pellets. , 2016, , .		0
194	Towards Low-cost Raman Spectroscopy by Using a Conventional CCD Camera. , 2016, , .		0
195	Fuels—Gaseous â~†. , 2018, , 90-90.		O