Andrea PajdarovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795338/publications.pdf Version: 2024-02-01

ΔΝΠΦΕΛ ΡΛΙΠΛΦΟΥΑ:

#	Article	IF	CITATIONS
1	Collisional-radiative model for an argon glow discharge. Journal of Applied Physics, 1998, 84, 121-136.	2.5	223
2	Pulsed dc Magnetron Discharges and their Utilization in Plasma Surface Engineering. Contributions To Plasma Physics, 2004, 44, 426-436.	1.1	110
3	Electron energy distributions and plasma parameters in high-power pulsed magnetron sputtering discharges. Plasma Sources Science and Technology, 2009, 18, 025008.	3.1	76
4	High-power pulsed sputtering using a magnetron with enhanced plasma confinement. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 42-47.	2.1	75
5	Pulsed dc magnetron discharge for high-rate sputtering of thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 420-424.	2.1	71
6	Absolute OH and O radical densities in effluent of a He/H ₂ O micro-scaled atmospheric pressure plasma jet. Plasma Sources Science and Technology, 2016, 25, 045013.	3.1	46
7	Reactive magnetron sputtering of Si–C–N films with controlled mechanical and optical properties. Diamond and Related Materials, 2003, 12, 1287-1294.	3.9	34
8	A parametric model for reactive high-power impulse magnetron sputtering of films. Journal Physics D: Applied Physics, 2016, 49, 055202.	2.8	34
9	A non-stationary model for high power impulse magnetron sputtering discharges. Journal of Applied Physics, 2011, 110, .	2.5	33
10	High-performance thermochromic VO2-based coatings with a low transition temperature deposited on glass by a scalable technique. Scientific Reports, 2020, 10, 11107.	3.3	29
11	Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control. Thin Solid Films, 2016, 619, 239-249.	1.8	25
12	lon energy distributions at substrate in bipolar HiPIMS: effect of positive pulse delay, length and amplitude. Plasma Sources Science and Technology, 2020, 29, 065003.	3.1	22
13	Hard multifunctional Hf–B–Si–C films prepared by pulsed magnetron sputtering. Surface and Coatings Technology, 2014, 257, 301-307.	4.8	20
14	Transport and ionization of sputtered atoms in high-power impulse magnetron sputtering discharges. Journal Physics D: Applied Physics, 2013, 46, 105203.	2.8	19
15	Plasma parameters in positive voltage pulses of bipolar HiPIMS discharge determined by Langmuir probe with a sub-microsecond time resolution. Plasma Sources Science and Technology, 2020, 29, 085016.	3.1	18
16	Optical emission spectroscopy during the deposition of zirconium dioxide films by controlled reactive high-power impulse magnetron sputtering. Journal of Applied Physics, 2017, 121, .	2.5	14
17	High-rate reactive high-power impulse magnetron sputtering of transparent conductive Al-doped ZnO thin films prepared at ambient temperature. Thin Solid Films, 2019, 679, 35-41.	1.8	12
18	Pulsed Magnetron Sputtering of Strongly Thermochromic VO2-Based Coatings with a Transition Temperature of 22 A°C onto Ultrathin Flexible Glass. Coatings, 2020, 10, 1258.	2.6	11

Andrea PajdarovÃi

#	Article	IF	CITATIONS
19	Ion Flux Characteristics in Pulsed Dual Magnetron Discharges Used for Deposition of Photoactive TiO ₂ Films. Plasma Processes and Polymers, 2011, 8, 191-199.	3.0	10
20	Ion-flux characteristics during low-temperature (300 °C) deposition of thermochromic VO ₂ films using controlled reactive HiPIMS. Journal Physics D: Applied Physics, 2019, 52, 025205.	2.8	10
21	Dynamics of processes during the deposition of ZrO2 films by controlled reactive high-power impulse magnetron sputtering: A modelling study. Journal of Applied Physics, 2017, 122, 043304.	2.5	8
22	Reactive high-power impulse magnetron sputtering of ZrO2 films with gradient ZrOx interlayers on pretreated steel substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 031503.	2.1	7
23	Effect of energetic particles on pulsed magnetron sputtering of hard nanocrystalline MBCN (M =â€⊤Ti, Zr,) Tj E	TQq1 1 0.: 1.8	784314 rgB 7
24	Dependence of characteristics of Hf(M)SiBCN (MÂ=ÂY, Ho, Ta, Mo) thin films on the M choice: Ab-initio and experimental study. Acta Materialia, 2021, 206, 116628.	7.9	7
25	Effect of voltage pulse characteristics on high-power impulse magnetron sputtering of copper. Plasma Sources Science and Technology, 2013, 22, 015009.	3.1	6
26	On density distribution of Ti atom and ion ground states near the target in HiPIMS discharge using cavity ring-down spectroscopy and laser induced fluorescence. Plasma Sources Science and Technology, 2022, 31, 05LT04.	3.1	3
27	Effect of Nitrogen Content on the Microstructure and Hardness of Hard Zr–B–C–N Films. Microscopy and Microanalysis, 2014, 20, 1892-1893.	0.4	2
28	Microstructure of High Temperature Oxidation Resistant Hf6B10Si31C2N50 and Hf7B10Si32C2N44 Films. Coatings, 2020, 10, 1170.	2.6	2
29	Effects of power per pulse on reactive HiPIMS deposition of ZrO2 films: A time-resolved optical emission spectroscopy study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and	2.1	Ο