Michael A Caprio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795184/publications.pdf

Version: 2024-02-01

38	1,006	16	31
papers	citations	h-index	g-index
39	39	39	598
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Vertical and temporal distribution of <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae) larvae in determinate and indeterminate soybean. Bulletin of Entomological Research, 2021, 111, 282-288.	1.0	4
2	Evolutionary process modeling with Bayesian inference of Spodoptera frugiperda ballooning and walking dispersal in Bt and nonâ€Bt cotton plant mixtures. Entomologia Experimentalis Et Applicata, 2021, 169, 721-731.	1.4	6
3	Quantifying the Contribution of Seed Blended Refugia in Field Corn to <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae) Populations. Journal of Economic Entomology, 2021, 114, 1771-1778.	1.8	2
4	Experimental and theoretical landscape influences on Spodoptera frugiperda movement and resistance evolution in contaminated refuge areas of Bt cotton. Journal of Pest Science, 2020, 93, 329-340.	3.7	11
5	Models of Diabrotica Populations: Demography, Population Genetics, Geographic Spread, and Management. Insects, 2020, 11, 712.	2.2	5
6	Location of <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae) larvae on different plant parts of determinate and indeterminate soybean. Bulletin of Entomological Research, 2020, 110, 725-731.	1.0	4
7	The Corn–Cotton Agroecosystem in the Mid-Southern United States: What Insecticidal Event Pyramids Should be Used in Each Crop to Extend Vip3A Durability. Journal of Economic Entomology, 2019, 112, 2894-2906.	1.8	12
8	Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus) Tj ETQq(0 0 rgBT	/Oyerlock 10
9	Effects of transgenic Bacillus thuringiensis cotton on insecticide use, heliothine counts, plant damage, and cotton yield: A meta-analysis, 1996-2015. PLoS ONE, 2018, 13, e0200131.	2.5	33
10	Educating the Next Generation of Insect Rearing Professionals: Lessons from the International Insect Rearing Workshop, Mississippi State University, 2000–2017. American Entomologist, 2018, 64, 102-111.	0.2	4
11	IPM Use With the Deployment of a Non-High Dose Bt Pyramid and Mitigation of Resistance for Western Corn Rootworm (<i>Diabrotica virgifera virgifera</i>). Environmental Entomology, 2016, 45, 747-761.	1.4	21
12	Impact of Insect Management on Population Dynamics and Insecticide Resistance of Tarnished Plant Bug (Hemiptera: Miridae). Journal of Economic Entomology, 2016, 109, 2517-2524.	1.8	5
13	The Impact of Inter-Kernel Movement in the Evolution of Resistance to Dual-Toxin Bt-Corn Varieties in <i>Helicoverpa zea</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2016, 109, 307-319.	1.8	17
14	Diffusion Rates and Dispersal Patterns of Unfed versus Recently Fed Bed Bugs (Cimex lectularius L.). Insects, 2015, 6, 792-804.	2.2	2
15	Prevalence of Helicoverpa zea (Lepidoptera: Noctuidae) on late season volunteer corn in Mississippi: Implications on Bt resistance management. Crop Protection, 2014, 64, 207-214.	2.1	5
16	Theoretical and empirical assessment of a seed mix refuge in corn for southwestern corn borer. Crop Protection, 2013, 49, 58-65.	2.1	15
17	Population analyses of Amblyomma maculatum ticks and Rickettsia parkeri using single-strand conformation polymorphism. Ticks and Tick-borne Diseases, 2013, 4, 439-444.	2.7	6
18	Risk Assessment for <l>Helicoverpa zea</l> (Lepidoptera: Noctuidae) Resistance on Dual-Gene Versus Single-Gene Corn. Journal of Economic Entomology, 2013, 106, 382-392.	1.8	18

#	Article	IF	Citations
19	When and where a seed mix refuge makes sense for managing insect resistance to Bt plants. Crop Protection, 2012, 38, 74-79.	2.1	60
20	Future Fitness of Female Insect Pests in Temporally Stable and Unstable Habitats and Its Impact on Habitat Utility as Refuges for Insect Resistance Management. Journal of Insect Science, 2009, 9, 1-10.	1.5	13
21	Characteristics of 11 polymorphic microsatellite markers in the red imported fire ant, <i>Solenopsis invicta</i> Buren. Molecular Ecology Resources, 2009, 9, 822-824.	4.8	O
22	Evaluating transgenic plants for suitability in pest and resistance management programs., 2007,, 769-789.		7
23	Modeling the Impact of Alternative Hosts on Helicoverpa zea Adaptation to Bollgard Cotton. Journal of Economic Entomology, 2006, 99, 2116-2124.	1.8	41
24	Assessing Risk of Resistance to Aerial Applications of Methyl-Parathion in Western Corn Rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2006, 99, 483-493.	1.8	6
25	Evidence from Genetic Markers Suggests Seasonal Variation in Dispersal inHeliothis virescens(Lepidoptera: Noctuidae). Environmental Entomology, 2004, 33, 1223-1231.	1.4	12
26	Evaluating the impacts of refuge width on source-sink dynamics between transgenic and non-transgenic cotton. Journal of Insect Science, 2004, 4, 3.	1.5	25
27	Temporal and Spatial Patterns of Allelic Frequencies in Cotton Bollworm (Lepidoptera: Noctuidae). Environmental Entomology, 2002, 31, 462-468.	1.4	20
28	Genetics and Fitness Costs of Cyromazine Resistance in the House Fly (Diptera: Muscidae). Journal of Economic Entomology, 2002, 95, 1251-1260.	1.8	27
29	Source-Sink Dynamics Between Transgenic and Non-Transgenic Habitats and Their Role in the Evolution of Resistance. Journal of Economic Entomology, 2001, 94, 698-705.	1.8	140
30	Characterization of male and female wingbeat frequencies in the Anopheles quadrimaculatus complex in Mississippi. Journal of the American Mosquito Control Association, 2001, 17, 186-9.	0.7	8
31	Simulating the Impact of Cross Resistance Between Bt toxins in Transformed Clover and Apples in New Zealand. Journal of Economic Entomology, 2000, 93, 173-179.	1.8	12
32	Evaluating Resistance Management Strategies for Multiple Toxins in the Presence of External Refuges. Journal of Economic Entomology, 1998, 91, 1021-1031.	1.8	129
33	Premating Isolation in a Simulation Model Generates Frequency-Dependent Selection and Alters Establishment Rates of Resistant Natural Enemies. Journal of Economic Entomology, 1995, 88, 205-212.	1.8	28
34	<i>Bacillus thuringiensis</i> gene deployment and resistance management in single―and multiâ€ŧactic environments. Biocontrol Science and Technology, 1994, 4, 487-497.	1.3	51
35	Metapopulation Dynamics Affect Resistance Development in the Predatory Mite, Metaseiulus occidentalis (Acari: Phytoseiidae). Journal of Economic Entomology, 1994, 87, 525-534.	1.8	34
36	Gene Flow Accelerates Local Adaptation Among Finite Populations: Simulating the Evolution of Insecticide Resistance. Journal of Economic Entomology, 1992, 85, 611-620.	1.8	160

#	Article	lF	CITATIONS
37	Model for Implementing a Genetically Improved Strain of a Parasitoid. American Entomologist, 1991, 37, 232-239.	0.2	21
38	Effects of Light, Temperature, and Feeding Status on Flight Initiation in Postdiapause Colorado Potato Beetles (Coleoptera: Chrysomelidae). Environmental Entomology, 1990, 19, 281-285.	1.4	28