
John Blackman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the regional typicality of Australian Shiraz wines using untargeted metabolomics. Australian Journal of Grape and Wine Research, 2021, 27, 378-391.	1.0	7
2	Changes in Red Wine Composition during Bottle Aging: Impacts of Grape Variety, Vineyard Location, Maturity, and Oxygen Availability during Aging. Journal of Agricultural and Food Chemistry, 2020, 68, 13331-13343.	2.4	13
3	Cultivar, site or harvest date: the gordian knot of wine terroir. Metabolomics, 2020, 16, 52.	1.4	12
4	A GC–MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chemistry, 2019, 270, 375-384.	4.2	38
5	Regional Discrimination of Australian Shiraz Wine Volatome by Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2019, 67, 10273-10284.	2.4	24
6	Copper(II) and Sulfur Dioxide in Chardonnay Juice and Shiraz Must: Impact on Volatile Aroma Compounds and Cu Forms in Wine. Beverages, 2019, 5, 70.	1.3	2
7	Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HS-SPME-GC†×†GC-TOFMS. Food Chemistry, 2019, 277, 753-765.	4.2	27
8	A comparative study of partial dealcoholisation versus early harvest: Effects on wine volatile and sensory profiles. Food Chemistry, 2018, 261, 21-29.	4.2	19
9	Volatile and sensory profiling of Shiraz wine in response to alcohol management: comparison of harvest timing versus technological approaches. Food Research International, 2018, 109, 561-571.	2.9	27
10	Analysis of temporal dominance of sensation data using correspondence analysis on Merlot wine with differing maceration and cap management regimes. Food Quality and Preference, 2018, 64, 245-252.	2.3	28
11	Harvesting and blending options for lower alcohol wines: a sensory and chemical investigation. Journal of the Science of Food and Agriculture, 2018, 98, 33-42.	1.7	18
12	Extended Maceration and Cap Management Impacts on the Phenolic, Volatile, and Sensory Profiles of Merlot Wine. American Journal of Enology and Viticulture, 2018, 69, 360-370.	0.9	9
13	Late-Season Shiraz Berry Dehydration That Alters Composition and Sensory Traits of Wine. Journal of Agricultural and Food Chemistry, 2018, 66, 7750-7757.	2.4	21
14	Changes in volatile composition and sensory attributes of wines during alcohol content reduction. Journal of the Science of Food and Agriculture, 2017, 97, 8-16.	1.7	60
15	Cover Image, Volume 97, Issue 1. Journal of the Science of Food and Agriculture, 2017, 97, i-i.	1.7	0
16	Gas Chromatography–Mass Spectrometry Method Optimized Using Response Surface Modeling for the Quantitation of Fungal Off-Flavors in Grapes and Wine. Journal of Agricultural and Food Chemistry, 2015, 63, 2877-2885.	2.4	29
17	Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate. Journal of Agricultural and Food Chemistry, 2015, 63, 4664-4672.	2.4	60
18	Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. Journal of Agricultural and Food Chemistry, 2015, 63, 9103-9111.	2.4	26

JOHN BLACKMAN

#	Article	IF	CITATIONS
19	Sensory characterization of Hunter Valley Semillon aged in bottle. Flavour and Fragrance Journal, 2014, 29, 340-349.	1.2	2
20	Viticulture and Wine Science. , 2014, , 197-261.		0
21	Wine Metabolomics: Objective Measures of Sensory Properties of Semillon from GC-MS Profiles. Journal of Agricultural and Food Chemistry, 2013, 61, 11957-11967.	2.4	55
22	Grapevine Bunch Rots: Impacts on Wine Composition, Quality, and Potential Procedures for the Removal of Wine Faults. Journal of Agricultural and Food Chemistry, 2013, 61, 5189-5206.	2.4	132
23	Astringency response of red wines: Potential role of molecular assembly. Trends in Food Science and Technology, 2012, 27, 25-36.	7.8	67
24	Production Technologies for Reduced Alcoholic Wines. Journal of Food Science, 2012, 77, R25-41.	1.5	119
25	Examination of the potential for using chemical analysis as a surrogate for sensory analysis. Analytica Chimica Acta, 2010, 660, 2-7.	2.6	23
26	Sensory, Chemical, and Electronic Tongue Assessment of Micro-oxygenated Wines and Oak Chip Maceration: Assessing the Commonality of Analytical Techniques. Journal of Agricultural and Food Chemistry, 2010, 58, 5026-5033.	2.4	26
27	Sweetness acceptance of novices, experienced consumers and winemakers in Hunter Valley Semillon wines. Food Quality and Preference, 2010, 21, 679-683.	2.3	52
28	Sensory characterization of Hunter Valley Semillon using descriptive analysis. Flavour and Fragrance Journal, 2009, 24, 238-244.	1.2	12