
David G Meckes Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anticancer and chemosensitization effects of cannabidiol in 2D and 3D cultures of TNBC: involvement of GADD45α, integrin-α5, -β5, -β1, and autophagy. Drug Delivery and Translational Research, 2022, , 1.	5.8	6
2	Combined Transcriptomic and Proteomic Profiling to Unravel Osimertinib, CARP-1 Functional Mimetic (CFM 4.17) Formulation and Telmisartan Combo Treatment in NSCLC Tumor Xenografts. Pharmaceutics, 2022, 14, 1156.	4.5	4
3	Engineering extracellular vesicles by threeâ€dimensional dynamic culture of human mesenchymal stem cells. Journal of Extracellular Vesicles, 2022, 11, .	12.2	45
4	Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer's disease-like phenotypes in a preclinical mouse model. Theranostics, 2021, 11, 8129-8142.	10.0	88
5	Role of Exosomes for Delivery of Chemotherapeutic Drugs. Critical Reviews in Therapeutic Drug Carrier Systems, 2021, 38, 53-97.	2.2	35
6	Biogenesis of Extracellular Vesicles Produced from Human-Stem-Cell-Derived Cortical Spheroids Exposed to Iron Oxides. ACS Biomaterials Science and Engineering, 2021, 7, 1111-1122.	5.2	20
7	Epstein-Barr Virus LMP1 Modulates the CD63 Interactome. Viruses, 2021, 13, 675.	3.3	10
8	Multiplex protein profiling method for extracellular vesicle protein detection. Scientific Reports, 2021, 11, 12477.	3.3	2
9	Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. MSphere, 2021, 6, e0019221.	2.9	16
10	Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. International Journal of Pharmaceutics, 2021, 607, 120943.	5.2	27
11	Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells, 2021, 10, 3335.	4.1	5
12	Extracellular Vesicle Collection from Human Stem Cells Grown in Suspension Bioreactors. Methods in Molecular Biology, 2021, , 193-204.	0.9	3
13	Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Molecular and Cell Biology, 2020, 21, 58.	2.0	20
14	Epstein-Barr Virus LMP1 Promotes Syntenin-1- and Hrs-Induced Extracellular Vesicle Formation for Its Own Secretion To Increase Cell Proliferation and Migration. MBio, 2020, 11, .	4.1	43
15	BiolD Combined with Mass Spectrometry to Study Herpesvirus Protein–Protein Interaction Networks. Methods in Molecular Biology, 2020, 2060, 327-341.	0.9	8
16	Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathogens, 2020, 16, e1009023.	4.7	12
17	Title is missing!. , 2020, 16, e1009023.		0

2

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1009023.		Ο
20	Title is missing!. , 2020, 16, e1009023.		0
21	Extracellular Vesicles in Epstein-Barr Virus Pathogenesis. Current Clinical Microbiology Reports, 2019, 6, 121-131.	3.4	16
22	Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.	4.1	29
23	Extracellular Vesicle Integrins Distinguish Unique Cancers. Proteomes, 2019, 7, 14.	3.5	43
24	Extraction of Extracellular Vesicles from Whole Tissue. Journal of Visualized Experiments, 2019, , .	0.3	30
25	The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology, 2018, 516, 55-70.	2.4	33
26	Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. Journal of Virology, 2018, 92, .	3.4	97
27	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
28	The Epstein–Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virology, 2018, 13, 863-887.	1.8	9
29	Methodological Approaches to Study Extracellular Vesicle miRNAs in Epstein–Barr Virus-Associated Cancers. International Journal of Molecular Sciences, 2018, 19, 2810.	4.1	13
30	Extracellular Vesicle Biogenesis in Cancer. , 2018, , 11-26.		3
31	Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1. Journal of Virology, 2018, 92, .	3.4	23
32	An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer's disease. Journal of Neuroscience Methods, 2018, 307, 210-220.	2.5	50
33	CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-I®B Signaling. Journal of Virology, 2017, 91, .	3.4	165
34	An Adaptable Polyethylene Glycol-Based Workflow for Proteomic Analysis of Extracellular Vesicles. Methods in Molecular Biology, 2017, 1660, 303-317.	0.9	19
35	Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2016, 5, 31295.	12.2	118
36	ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Scientific Reports, 2016, 6, 23978.	3.3	449

DAVID G MECKES JR

#	Article	IF	CITATIONS
37	Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget, 2016, 7, 86999-87015.	1.8	201
38	Exosomal Communication Goes Viral. Journal of Virology, 2015, 89, 5200-5203.	3.4	135
39	Affinity Purification Combined with Mass Spectrometry to Identify Herpes Simplex Virus Protein–Protein Interactions. Methods in Molecular Biology, 2014, 1144, 209-222.	0.9	8
40	Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2925-33.	7.1	217
41	Epstein-Barr Virus LMP1 Modulates Lipid Raft Microdomains and the Vimentin Cytoskeleton for Signal Transduction and Transformation. Journal of Virology, 2013, 87, 1301-1311.	3.4	61
42	Epstein-Barr Virus LMP1 Activates EGFR, STAT3, and ERK through Effects on PKCδ. Journal of Virology, 2011, 85, 4399-4408.	3.4	142
43	Interaction and Interdependent Packaging of Tegument Protein UL11 and Glycoprotein E of Herpes Simplex Virus. Journal of Virology, 2011, 85, 9437-9446.	3.4	50
44	Microvesicles and Viral Infection. Journal of Virology, 2011, 85, 12844-12854.	3.4	349
45	Direct and Specific Binding of the UL16 Tegument Protein of Herpes Simplex Virus to the Cytoplasmic Tail of Glycoprotein E. Journal of Virology, 2011, 85, 9425-9436.	3.4	36
46	Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus. Virology, 2010, 398, 208-213.	2.4	40
47	Interaction Domains of the UL16 and UL21 Tegument Proteins of Herpes Simplex Virus. Journal of Virology, 2010, 84, 2963-2971.	3.4	66
48	Human tumor virus utilizes exosomes for intercellular communication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20370-20375.	7.1	458
49	Analysis of the Interaction between the UL11 and UL16 Tegument Proteins of Herpes Simplex Virus. Journal of Virology, 2008, 82, 10693-10700.	3.4	57
50	Structural Rearrangement within an Enveloped Virus upon Binding to the Host Cell. Journal of Virology, 2008, 82, 10429-10435.	3.4	33
51	Dynamic Interactions of the UL16 Tegument Protein with the Capsid of Herpes Simplex Virus. Journal of Virology, 2007, 81, 13028-13036.	3.4	72