
Hendrik Poeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2795158/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 2006, 314, 994-997.	12.6	2,094
2	Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1373-1383.	2.0	619
3	Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 11² production. Nature Immunology, 2010, 11, 63-69.	14.5	477
4	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	12.4	404
5	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	30.7	353
6	Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells. Journal of Clinical Investigation, 2009, 119, 2399-411.	8.2	322
7	The Nlrp3 inflammasome regulates acute graft-versus-host disease. Journal of Experimental Medicine, 2013, 210, 1899-1910.	8.5	201
8	RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	12.4	114
9	RIC-I activation is critical for responsiveness to checkpoint blockade. Science Immunology, 2019, 4, .	11.9	80
10	Cytosolic RIG-l–like helicases act as negative regulators of sterile inflammation in the CNS. Nature Neuroscience, 2012, 15, 98-106.	14.8	60
11	The Role of Pattern-Recognition Receptors in Graft-Versus-Host Disease and Graft-Versus-Leukemia after Allogeneic Stem Cell Transplantation. Frontiers in Immunology, 2014, 5, 337.	4.8	55
12	A20 Restrains Thymic Regulatory T Cell Development. Journal of Immunology, 2017, 199, 2356-2365.	0.8	29
13	XIAP deficiency in hematopoietic recipient cells drives donor Tâ€cell activation and GvHD in mice. European Journal of Immunology, 2019, 49, 504-507.	2.9	13
14	A20 deletion in TÂcells modulates acute graftâ€versusâ€host disease in mice. European Journal of Immunology, 2017, 47, 1982-1988.	2.9	9
15	Type I interferon signaling before hematopoietic stem cell transplantation lowers donor T cell activation via reduced allogenicity of recipient cells. Scientific Reports, 2019, 9, 14955.	3.3	9
16	Tumor cellâ€intrinsic RIGâ€i signaling governs synergistic effects of immunogenic cancer therapies and checkpoint inhibitors in mice. European Journal of Immunology, 2021, 51, 1531-1534.	2.9	7
17	Regeneration After Radiation- and Immune-Mediated Tissue Injury Is Not Enhanced by Type III Interferon Signaling. International Journal of Radiation Oncology Biology Physics, 2019, 103, 970-976.	0.8	5
18	In Vivo Immunogenicity Screening of Tumor-Derived Extracellular Vesicles by Flow Cytometry of Splenic T Cells. Journal of Visualized Experiments, 2021, , .	0.3	2

Hendrik Poeck

#	Article	IF	CITATIONS
19	Targeting RIC-I or STING promotes epithelial regeneration. Oncotarget, 2017, 8, 114418-114419.	1.8	2
20	RIG-I Activation Is Critical for Responsiveness to Checkpoint Blockade. Blood, 2019, 134, 624-624.	1.4	1
21	ABO subgroup incompatibility with severe hemolysis after consecutive allogeneic stem cell transplantations. EJHaem, 2021, 2, 280-284.	1.0	0
22	Role of melanoma cell-intrinsic RIG-I and STING signaling for checkpoint inhibitor-mediated anticancer immunity Journal of Clinical Oncology, 2018, 36, 3081-3081.	1.6	0
23	The role of type I interferon in prophylaxis of graft-versus-host disease Journal of Clinical Oncology, 2018, 36, e19015-e19015.	1.6	Ο
24	Type I Interferon Signaling before Hematopoietic Stem Cell Transplantation Lowers Donor T Cell Activation Via Reduced Allogenicity of Recipient Cells. Blood, 2019, 134, 4431-4431.	1.4	0
25	Microbial-Derived Metabolites Drive Protective Type-I Interferon Responses in Models of Gut Epithelial Damage and Limit Graft-Versus-Host Disease. Blood, 2019, 134, 3207-3207.	1.4	Ο