Chang-Ju Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/279498/publications.pdf

Version: 2024-02-01

1307594 1058476 26 187 7 14 citations g-index h-index papers 26 26 26 320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology, 2018, 29, 415303.	2.6	41
2	Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1â^'xN Buffer Layer. Sensors, 2017, 17, 1684.	3.8	22
3	GaN metal–semiconductor–metal UV sensor with multi-layer graphene as Schottky electrodes. Japanese Journal of Applied Physics, 2015, 54, 06FF08.	1.5	20
4	Dual-wavelength sensitive AlGaN/GaN metal-insulator-semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios. Applied Physics Letters, 2013, 103, .	3.3	17
5	GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate. Sensors, 2019, 19, 1051.	3.8	14
6	Hybrid UV Active Pixel Sensor Implemented Using GaN MSM UV Sensor and Si-Based Circuit. IEEE Sensors Journal, 2015, 15, 5071-5074.	4.7	11
7	Multifunctional graphene sensor for detection of environment signals using a decoupling technique. Solid-State Electronics, 2019, 151, 40-46.	1.4	8
8	Analytic model of spalling technique for thickness-controlled separation of single-crystalline semiconductor layers. Solid-State Electronics, 2020, 163, 107660.	1.4	8
9	Effect of copper surface morphology on grain size uniformity of graphene grown by chemical vapor deposition. Current Applied Physics, 2019, 19, 1414-1420.	2.4	7
10	Layer-resolved release of epitaxial layers in III-V heterostructure via a buffer-free mechanical separation technique. Science Advances, 2022, 8, eabl6406.	10.3	7
11	Graphene/Al ₂ O ₃ /AlGaN/GaN Schottky MISIM Diode for Sensing Double UV Bands. IEEE Sensors Journal, 2016, 16, 6903-6907.	4.7	6
12	GaN schottky barrier MOSFET using transparent source/drain electrodes for UV-optoelectronic integration. Solid-State Electronics, 2012, 73, 78-80.	1.4	5
13	Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid-State Electronics, 2020, 173, 107901.	1.4	5
14	Extraction of intrinsic field-effect mobility of graphene considering effects of gate-bias-induced contact modulation. Journal of Applied Physics, 2020, 127, .	2.5	5
15	Performance of GaN Metal–Oxide–Semiconductor Field-Effect Transistor with Regrown n+-Source/Drain on a Selectively Etched GaN. Japanese Journal of Applied Physics, 2013, 52, 061001.	1.5	4
16	Effect of Graphene Doping Level near the Metal Contact Region on Electrical and Photoresponse Characteristics of Graphene Photodetector. Sensors, 2020, 20, 4661.	3.8	3
17	Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene. Nanomaterials, 2022, 12, 206.	4.1	2
18	Enhanced UV-visible rejection ratio in an MSM UV photodetector fabricated on N-face GaN by thermal annealing effects., 2012,,.		1

#	Article	IF	CITATIONS
19	Evaluation of the average grain size of polycrystalline graphene using an electrical characterization method. Solid-State Electronics, 2021, 186, 108172.	1.4	1
20	Body bias effect of GaN schottky barrier MOSFET with ITO source/drain. , 2010, , .		0
21	GaN schottky barrier MOSFET using indium-tin-oxide as source, drain and gate material. , 2010, , .		O
22	Vertical GaN schottky barrier diode on an N-face GaN layer formed by ELOG and laser-lift-off technique for high-power application. , $2011, \dots$		0
23	UV-A selective photo-responsivity in a GaN MSM photodetector using ITO schottky electrodes. , 2011, , .		O
24	Dual-band responsivity of AlGaN/GaN MSM UV photodiode. , 2012, , .		0
25	High UV-visible rejection ratio of dual-wavelength detecting MISIM UV sensor with a thin Al <inf>2</inf> O <inf>3</inf> layer., 2013,,.		O
26	Double-wavelength sensitive AlGaN/GaN MISIM UV sensor using multi-layer graphene as Schottky electrodes., 2015,,.		0