Jorge Angeles

List of Publications by Citations

Source: https://exaly.com/author-pdf/2794682/jorge-angeles-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

267 papers

6,653 citations

36 h-index

/3 g-index

288 ext. papers

7,649 ext. citations

avg, IF

6.23 L-index

#	Paper	IF	Citations
267	. IEEE Transactions on Automation Science and Engineering, 1990 , 6, 281-290		1071
266	A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1991 , 113, 220-226	3	632
265	The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator. <i>Journal of Mechanisms, Transmissions, and Automation in Design</i> , 1989 , 111, 202-207		370
264	Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators. <i>International Journal of Robotics Research</i> , 1992 , 11, 560-571	5.7	166
263	Kinematic Isotropy and the Optimum Design of Parallel Manipulators. <i>International Journal of Robotics Research</i> , 1997 , 16, 185-197	5.7	163
262	Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series, 2007,	0.3	132
261	The Qualitative Synthesis of Parallel Manipulators. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2004 , 126, 617-624	3	129
260	Generalized transmission index and transmission quality for spatial linkages. <i>Mechanism and Machine Theory</i> , 2007 , 42, 1225-1237	4	107
259	The Design of Isotropic Manipulator Architectures in the Presence of Redundancies. <i>International Journal of Robotics Research</i> , 1992 , 11, 196-201	5.7	96
258	On the Numerical Solution of the Inverse Kinematic Problem. <i>International Journal of Robotics Research</i> , 1985 , 4, 21-37	5.7	96
257	The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems. Journal of Mechanical Design, Transactions of the ASME, 2006 , 128, 168-178	3	91
256	The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1988 , 55, 243-244	2.7	87
255	Singularity analysis of planar parallel manipulators. <i>Mechanism and Machine Theory</i> , 1995 , 30, 665-678	4	78
254	Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series, 2014,	0.3	72
253	Is there a characteristic length of a rigid-body displacement?. <i>Mechanism and Machine Theory</i> , 2006 , 41, 884-896	4	69
252	A robust forward-displacement analysis of spherical parallel robots. <i>Mechanism and Machine Theory</i> , 2009 , 44, 2204-2216	4	66
251	A New Family of Two-Wheeled Mobile Robots: Modeling and Controllability 2007 , 23, 169-173		66

(2001-2006)

250	Kinetostatic Design of an Innovative Schllflies-Motion Generator. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2006 , 220, 935-943	1.3	61	
249	The stiffness matrix in elastically articulated rigid-body systems. <i>Multibody System Dynamics</i> , 2007 , 18, 169-184	2.8	58	
248	The direct kinematics of parallel manipulators under joint-sensor redundancy. <i>IEEE Transactions on Automation Science and Engineering</i> , 2000 , 16, 12-19		58	
247	An unconstrained nonlinear least-square method of optimization of RRRR planar path generators. <i>Mechanism and Machine Theory</i> , 1988 , 23, 343-353	4	58	
246	Virtual-Power Flow and Mechanical Gear-Mesh Power Losses of Epicyclic Gear Trains. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2007 , 129, 107-113	3	56	
245	Posture optimization in robot-assisted machining operations. <i>Mechanism and Machine Theory</i> , 2012 , 51, 74-86	4	50	
244	The optimal gear-shifting for a multi-speed transmission system for electric vehicles. <i>Mechanism and Machine Theory</i> , 2017 , 116, 1-13	4	48	
243	Kinematics and dynamics of a six-degree-of-freedom parallel manipulator with revolute legs. <i>Robotica</i> , 1997 , 15, 385-394	2.1	47	
242	The control of linear time-periodic systems using Floquet Lyapunov theory. <i>International Journal of Control</i> , 2004 , 77, 472-490	1.5	46	
241	Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement. <i>International Journal of Robotics Research</i> , 1988 , 7, 32-47	5.7	45	
240	On the workspace determination of spherical serial and platform mechanisms. <i>Mechanism and Machine Theory</i> , 1999 , 34, 497-512	4	42	
239	The mechanical design of a seven-axes manipulator with kinematic isotropy. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 1995 , 14, 21-41	2.9	42	
238	The Jacobian condition number as a dexterity index in 6R machining robots. <i>Robotics and Computer-Integrated Manufacturing</i> , 2012 , 28, 694-699	9.2	40	
237	A collision-avoidance scheme for redundant manipulators: Theory and experiments. <i>Journal of Field Robotics</i> , 2005 , 22, 737-757		39	
236	Coupler-curve synthesis of four-bar linkages via a novel formulation. <i>Mechanism and Machine Theory</i> , 2015 , 94, 177-187	4	38	
235	Nonholonomic Systems Revisited Within the Framework of Analytical Mechanics. <i>Applied Mechanics Reviews</i> , 1998 , 51, 415-433	8.6	38	
234	Real-time direct kinematics of general six-degree-of-freedom parallel manipulators with minimum-sensor data. <i>Journal of Field Robotics</i> , 1995 , 12, 833-844		38	
233	On the kinematic design of the 5R planar, symmetric manipulator. <i>Mechanism and Machine Theory</i> , 2001 , 36, 1301-1313	4	37	

232	Optimization of Dynamic Forces in Mechanical Hands. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1991 , 113, 167-173	3	37
231	The control of semi-autonomous two-wheeled robots undergoing large payload-variations 2004,		36
230	Computation of all optimum dyads in the approximate synthesis of planar linkages for rigid-body guidance. <i>Mechanism and Machine Theory</i> , 2000 , 35, 1065-1078	4	36
229	Singularity analysis of three-legged parallel robots based on passive-joint velocities. <i>IEEE Transactions on Automation Science and Engineering</i> , 2001 , 17, 413-422		36
228	Experimental Validation of an Underactuated Two-Wheeled Mobile Robot. <i>IEEE/ASME Transactions on Mechatronics</i> , 2009 , 14, 252-257	5.5	35
227	Unconstrained nonlinear least-square optimization of planar linkages for rigid-body guidance. <i>Mechanism and Machine Theory</i> , 1990 , 25, 97-118	4	35
226	The rule-based conceptual design of the architecture of serial Schfiflies-motion generators. <i>Mechanism and Machine Theory</i> , 2010 , 45, 251-260	4	34
225	A unified inputButput analysis of four-bar linkages. <i>Mechanism and Machine Theory</i> , 2008 , 43, 240-251	4	34
224	Nonlinear modeling and parameter identification of harmonic drive robotic transmissions		34
223	The robust design of parallel spherical robots. <i>Mechanism and Machine Theory</i> , 2011 , 46, 335-343	4	33
222	On the nonlinear controllability of a quasiholonomic mobile robot		32
221	Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part I: Finitely-Separated Positions. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1986 , 108, 32-38	1.6	32
220	On the elastostatic analysis of mechanical systems. <i>Mechanism and Machine Theory</i> , 2012 , 58, 202-216	4	29
219	The Computation of All 4R Serial Spherical Wrists With an Isotropic Architecture. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2003 , 125, 275-280	3	29
218	Impact dynamics of flexible-joint robots. <i>Computers and Structures</i> , 2005 , 83, 25-33	4.5	29
217	A General Method of Four-Bar Linkage Mobility Analysis. <i>Journal of Mechanisms, Transmissions, and Automation in Design</i> , 1987 , 109, 197-203		29
216	Off-line programming of six-axis robots for optimum five-dimensional tasks. <i>Mechanism and Machine Theory</i> , 2016 , 100, 155-169	4	28
215	The design of kinematically isotropic rolling robots with omnidirectional wheels. <i>Mechanism and Machine Theory</i> , 1995 , 30, 1127-1137	4	27

(2008-1989)

214	Kinematic Inversion of Robotic Manipulators in the Presence of Redundancies. <i>International Journal of Robotics Research</i> , 1989 , 8, 80-97	5.7	26	
213	A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis. <i>Journal of Mechanisms and Robotics</i> , 2017 , 9,	2.2	25	
212	Synthesis of the Base Curves For N-Lobed Elliptical Gears. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2005 , 127, 997-1005	3	25	
211	The Generation of Contact Surfaces of Indexing Cam Mechanisms Unified Approach. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1994 , 116, 369-374	3	25	
210	A two-phase control algorithm for gear-shifting in a novel multi-speed transmission for electric vehicles. <i>Mechanical Systems and Signal Processing</i> , 2018 , 104, 145-154	7.8	25	
209	A review of spherical motion generation using either spherical parallel manipulators or spherical motors. <i>Mechanism and Machine Theory</i> , 2019 , 140, 377-388	4	23	
208	Impacts in multibody systems: modeling and experiments. Multibody System Dynamics, 2008, 20, 163-17	′6 .8	23	
207	An algorithm for the inverse dynamics of n-axis general manipulators using Kane's equations. <i>Computers and Mathematics With Applications</i> , 1989 , 17, 1545-1561	2.7	23	
206	Algorithms for Involute and Octoidal Bevel-Gear Generation. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2005 , 127, 664-672	3	22	
205	Design, modelling and estimation of a novel modular multi-speed transmission system for electric vehicles. <i>Mechatronics</i> , 2017 , 45, 119-129	3	21	
204	. IEEE/ASME Transactions on Mechatronics, 2005 , 10, 43-49	5.5	21	
203	Synthesis of conjugate Geneva mechanisms with curved slots. <i>Mechanism and Machine Theory</i> , 2002 , 37, 1043-1061	4	21	
202	Modular and Recursive Kinematics and Dynamics for Parallel Manipulators. <i>Multibody System Dynamics</i> , 2005 , 14, 419-455	2.8	21	
201	Optimization of a Test Trajectory for SCARA Systems 2008 , 225-234		21	
200	The dynamics of a parallel Schiflies-motion generator. <i>Mechanism and Machine Theory</i> , 2018 , 119, 119-	1 2 9	20	
199	WheelBoil Interaction Model for Rover Simulation and Analysis Using Elastoplasticity Theory. <i>IEEE Transactions on Robotics</i> , 2013 , 29, 1271-1288	6.5	20	
198	A new look at the BallDisteli diagram and its relevance to spatial gearing. <i>Mechanism and Machine Theory</i> , 2007 , 42, 1362-1375	4	20	
197	A novel family of linkages for advanced motion synthesis. <i>Mechanism and Machine Theory</i> , 2008 , 43, 882	2-,890	20	

196	A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2007 , 129, 883-886	3	20
195	Rigid-body pose and twist estimation using an accelerometer array. <i>Archive of Applied Mechanics</i> , 2004 , 74, 223-236	2.2	20
194	A novel manipulator architecture for the production of SCARA motions		20
193	Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. <i>Robotics and Autonomous Systems</i> , 2018 , 110, 102-111	3.5	20
192	Synthesis of the Pitch Cones of N-Lobed Elliptical Bevel Gears. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2011 , 133,	3	19
191	. IEEE/ASME Transactions on Mechatronics, 2003 , 8, 469-475	5.5	19
190	Optimization of planar and spherical function generators as minimum-defect linkages. <i>Mechanism and Machine Theory</i> , 1989 , 24, 293-307	4	19
189	Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitesimally-Separated Positions. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1986 , 108, 39-43	1.6	19
188	The Synthesis of the Axodes of RCCC Linkages. Journal of Mechanisms and Robotics, 2016, 8,	2.2	19
187	The inverse kinematics of hyper-redundant manipulators using splines		18
187 186	The inverse kinematics of hyper-redundant manipulators using splines On Twist and Wrench Generators and Annihilators 1994 , 379-411		18
, i		1.1	
186	On Twist and Wrench Generators and Annihilators 1994 , 379-411 DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE. <i>Transactions of the Canadian</i>	1.1	18
186 185	On Twist and Wrench Generators and Annihilators 1994, 379-411 DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE. Transactions of the Canadian Society for Mechanical Engineering, 1988, 12, 219-226 THE MODELLING OF HOLONOMIC MECHANICAL SYSTEMS USING A NATURAL ORTHOGONAL		18
186 185 184	On Twist and Wrench Generators and Annihilators 1994, 379-411 DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1988, 12, 219-226 THE MODELLING OF HOLONOMIC MECHANICAL SYSTEMS USING A NATURAL ORTHOGONAL COMPLEMENT. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1989, 13, 81-89 Kinematic analysis and optimum design of a novel 2PUR-2RPU parallel robot. <i>Mechanism and</i>	1.1	18 18
186 185 184	On Twist and Wrench Generators and Annihilators 1994, 379-411 DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1988, 12, 219-226 THE MODELLING OF HOLONOMIC MECHANICAL SYSTEMS USING A NATURAL ORTHOGONAL COMPLEMENT. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1989, 13, 81-89 Kinematic analysis and optimum design of a novel 2PUR-2RPU parallel robot. <i>Mechanism and Machine Theory</i> , 2019, 139, 407-423	1.1	18 18 18
186 185 184 183	On Twist and Wrench Generators and Annihilators 1994, 379-411 DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE. Transactions of the Canadian Society for Mechanical Engineering, 1988, 12, 219-226 THE MODELLING OF HOLONOMIC MECHANICAL SYSTEMS USING A NATURAL ORTHOGONAL COMPLEMENT. Transactions of the Canadian Society for Mechanical Engineering, 1989, 13, 81-89 Kinematic analysis and optimum design of a novel 2PUR-2RPU parallel robot. Mechanism and Machine Theory, 2019, 139, 407-423 Dynamic Response of Linear Mechanical Systems. Mechanical Engineering Series, 2012,	1.1 4	18 18 18 17

178	On the kinetostatic optimization of revolute-coupled planar manipulators. <i>Mechanism and Machine Theory</i> , 2002 , 37, 351-374	4	16	
177	The optimum synthesis of an elastic torque-compensating cam mechanism. <i>Mechanism and Machine Theory</i> , 2001 , 36, 245-259	4	16	
176	The Proportional-Damping Matrix of Arbitrarily Damped Linear Mechanical Systems. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2002 , 69, 649-656	2.7	16	
175	The translating Joint: Design and applications. <i>Mechanism and Machine Theory</i> , 2018 , 122, 361-370	4	15	
174	Generalization of the Energetic Coefficient of Restitution for Contacts in Multibody Systems. <i>Journal of Computational and Nonlinear Dynamics</i> , 2008 , 3,	1.4	15	
173	The mechanical design of a novel Schfiflies-motion generator. <i>Robotics and Computer-Integrated Manufacturing</i> , 2007 , 23, 82-93	9.2	15	
172	The Synthesis of the Pitch Surfaces of Internal and External Skew-Gears and Their Racks. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2006 , 128, 794-802	3	15	
171	A Sequential-Quadratic-Programming Algorithm Using Orthogonal Decomposition With Gerschgorin Stabilization. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2001 , 123, 501-509	3	15	
170	The angular-acceleration tensor of rigid-body kinematics and its properties. <i>Archive of Applied Mechanics</i> , 1999 , 69, 204-214	2.2	15	
169	Synthesis of Contact Surfaces of Spherical Cam-Oscillating Roller-Follower Mechanisms: A General Approach. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1994 , 116, 315-319	3	15	
168	Iterative Kinematic Inversion of General Five-Axis Robot Manipulators. <i>International Journal of Robotics Research</i> , 1986 , 4, 59-70	5.7	15	
167	Computation of Rigid-Body Angular Acceleration From Point-Acceleration Measurements. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1987 , 109, 124-127	1.6	15	
166	. IEEE Transactions on Systems, Man, and Cybernetics, 1988, 18, 173-178		15	
165	Performance evaluation of path-generating planar, spherical and spatial four-bar linkages. <i>Mechanism and Machine Theory</i> , 1988 , 23, 257-268	4	15	
164	Synthesis of plane curves with prescribed local geometric properties using periodic splines. <i>CAD Computer Aided Design</i> , 1983 , 15, 147-155	2.9	15	
163	Kinetostatic and Inertial Conditioning of the McGill Schfiflies-Motion Generator. <i>Advances in Mechanical Engineering</i> , 2010 , 2, 186203	1.2	15	
162	Singularity-free path-planning of dexterous pointing tasks for a class of spherical parallel mechanisms. <i>Mechanism and Machine Theory</i> , 2018 , 128, 47-57	4	14	
161	Design and optimization of a drivetrain with two-speed transmission for electric delivery step van 2014 ,		14	

160	The size-minimization of planar cam mechanisms. <i>Mechanism and Machine Theory</i> , 2001 , 36, 371-386	4	14
159	A Mathematical Model of Multispeed Transmissions in Electric Vehicles in the Presence of Gear Shifting. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 397-408	6.8	13
158	Viscoelastic modeling of the contact interaction between a tactile sensor and an atrial tissue. <i>IEEE Transactions on Biomedical Engineering</i> , 2012 , 59, 1727-38	5	13
157	The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7,	2.2	13
156	On Martin Disteli's spatial cycloidal gearing. Mechanism and Machine Theory, 2013, 60, 73-89	4	13
155	A Robust Solution of the Spatial Burmester Problem. <i>Journal of Mechanisms and Robotics</i> , 2012 , 4,	2.2	13
154	Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements. <i>Multibody System Dynamics</i> , 2008 , 19, 383-406	2.8	13
153	. IEEE Transactions on Automation Science and Engineering, 2000 , 16, 720-731		13
152	The design of spherical multilobe-cam mechanisms. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2009 , 223, 473-482	1.3	12
151	On the kinematic conditioning of robotic manipulators		
			12
150	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6	4	12
150 149	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine</i>	2.2	
	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6		12
149	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6 Synthesis of RCCC Linkages to Visit Four Given Poses. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7,		12
149	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6 Synthesis of RCCC Linkages to Visit Four Given Poses. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7, Robot-assisted Rapid Prototyping for ice structures 2009 , The Isotropic Design of Two General Classes of Planar Parallel Manipulators. <i>Journal of Field</i>		12 11 11
149 148 147	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6 Synthesis of RCCC Linkages to Visit Four Given Poses. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7, Robot-assisted Rapid Prototyping for ice structures 2009 , The Isotropic Design of Two General Classes of Planar Parallel Manipulators. <i>Journal of Field Robotics</i> , 1995 , 12, 795-805 The Kinematic Inversion of Robot Manipulators in the Presence of Singularities. <i>Journal of Dynamic</i>	2.2	12 11 11
149 148 147 146	Optimal synthesis of cam mechanisms with oscillating flat-face followers. <i>Mechanism and Machine Theory</i> , 1988 , 23, 1-6 Synthesis of RCCC Linkages to Visit Four Given Poses. <i>Journal of Mechanisms and Robotics</i> , 2015 , 7, Robot-assisted Rapid Prototyping for ice structures 2009 , The Isotropic Design of Two General Classes of Planar Parallel Manipulators. <i>Journal of Field Robotics</i> , 1995 , 12, 795-805 The Kinematic Inversion of Robot Manipulators in the Presence of Singularities. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1988 , 110, 246-254 Terrain modelling in simulation-based performance evaluation of rovers. <i>Canadian Aeronautics and</i>	2.2	12 11 11 11

142	Dual Cayleyklein parameters and MBius transform: Theory and applications. <i>Mechanism and Machine Theory</i> , 2016 , 106, 50-67	4	10
141	Design and validation of a spatial two-limb 3R1T parallel manipulator with remote center-of-motion. <i>Mechanism and Machine Theory</i> , 2020 , 149, 103807	4	9
140	The dynamics of parallel Schfiflies motion generators: The case of a two-limb system. <i>Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering</i> , 2009 , 223, 29-52	1	9
139	The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach		9
138			9
137	The Design of Cam Mechanisms With Translating Flat-Face Followers Under Curvature Constraints. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1994 , 116, 306-310	3	9
136	The Global Least-Square Optimization of Function-Generating Linkages. <i>Journal of Mechanisms, Transmissions, and Automation in Design</i> , 1987 , 109, 204-209		9
135	Workspace Determination and Feedback Control of a Pick-and-Place Parallel Robot: Analysis and Experiments. <i>IEEE Robotics and Automation Letters</i> , 2020 , 5, 40-47	4.2	9
134	Gear-shifting in a novel modular multi-speed transmission for electric vehicles using linear quadratic integral control. <i>Mechanism and Machine Theory</i> , 2018 , 128, 359-367	4	9
133	A novel concept for analysis and performance evaluation of wheeled rovers. <i>Mechanism and Machine Theory</i> , 2015 , 83, 137-151	4	8
132	An innovative tooth root profile for spur gears and its effect on service life. <i>Meccanica</i> , 2017 , 52, 1825-1	841	8
131	The development of an innovative two-DOF cylindrical drive: Design, analysis and preliminary tests 2014 ,		8
130	Simplectic Architectures for True Multi-axial Accelerometers: A Novel Application of Parallel Robots. <i>Proceedings - IEEE International Conference on Robotics and Automation</i> , 2007 ,		8
129	Energy Analysis and Decoupling in Three-Dimensional Impacts of Multibody Systems. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2007 , 74, 845-851	2.7	8
128	Management of parallel-manipulator singularities using joint-coupling. Advanced Robotics, 2007, 21, 583	3 16/ 90	8
127	Pitfalls of a least-squares-equivalent controller for linear, time-periodic systems. <i>International Journal of Control</i> , 2001 , 74, 199-204	1.5	8
126	Pose-and-twist estimation of a rigid body using accelerometers		8
125	The Kinematics of the Swashplate Mechanism of a VTOL Unmanned Aerial Vehicle. <i>Multibody System Dynamics</i> , 1999 , 3, 333-365	2.8	8

124	The Design of a Novel Pure-Rolling Transmission to Convert Rotational into Translational Motion. Journal of Mechanical Design, Transactions of the ASME, 2003 , 125, 205-207	3	8
123	Full-mobility 3-CCC parallel-kinematics machines: Forward kinematics, singularity, workspace and dexterity analyses. <i>Mechanism and Machine Theory</i> , 2018 , 126, 312-328	4	7
122	A Spatial Version of Octoidal Gears Via the Generalized Camus Theorem. <i>Journal of Mechanisms and Robotics</i> , 2016 , 8,	2.2	7
121	Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks. <i>SAE International Journal of Alternative Powertrains</i> , 2018 , 7, 27-42	2	7
120	. Journal of Microelectromechanical Systems, 2008 , 17, 948-961	2.5	7
119	Optimum Kinetimatics Design of Drives for Wheeled Mobile Robots Based on Cam-Roller Pairs. Journal of Mechanical Design, Transactions of the ASME, 2007 , 129, 7-16	3	7
118	A Formalism for the Analysis and Design of Modular Kinematic Structures. <i>International Journal of Robotics Research</i> , 1998 , 17, 720-730	5.7	7
117			7
116	Representation graphique de la region de mobilite des mecanismes plans et spheriques a barres articulees. <i>Mechanism and Machine Theory</i> , 1987 , 22, 557-562	4	7
115	A topology-change model of multi-speed transmissions in electric vehicles during gear-shifting. <i>Mechatronics</i> , 2018 , 55, 151-161	3	7
114	The virtual screw: Concept, design and applications. <i>Mechanism and Machine Theory</i> , 2018 , 128, 349-358	3 4	7
113	Contributions to the kinematics of pointing. <i>Mechanism and Machine Theory</i> , 2017 , 108, 97-109	4	6
112	The role of the rotation matrix in the teaching of planar kinematics. <i>Mechanism and Machine Theory</i> , 2015 , 89, 28-37	4	6
111	KINEMATICS AND SINGULARITY ANALYSIS OF A CRRHHRRC PARALLEL SCHNFLIES MOTION GENERATOR. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2014 , 38, 173-183	1.1	6
110	PATH PLANNING FOR ROBOT-ASSISTED RAPID PROTOTYPING OF ICE STRUCTURES. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2009 , 33, 689-700	1.1	6
109	The Semigraphical Solution of the Direct Kinematics of General Platform-Type Parallel Manipulators. <i>Solid Mechanics and Its Applications</i> , 1993 , 165-173	0.4	6
108	Kinematic properties of planar and spherical logarithmic spirals: Applications to the synthesis of involute tooth profiles. <i>Mechanism and Machine Theory</i> , 2019 , 136, 14-26	4	6
107	A Multibody Dynamics Framework for Simulation of Rovers on Soft Terrain. <i>Journal of Computational and Nonlinear Dynamics</i> , 2015 , 10,	1.4	5

(2001-2014)

106	Isotropic Accelerometer Strapdowns and Related Algorithms for Rigid-Body Pose and Twist Estimation. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2014 , 81,	2.7	5
105	Constraint-wrench analysis of robotic manipulators. <i>Multibody System Dynamics</i> , 2013 , 29, 139-168	2.8	5
104	A Novel Paradigm for the Qualitative Synthesis of Simple Kinematic Chains Based on Complexity Measures. <i>Journal of Mechanisms and Robotics</i> , 2011 , 3,	2.2	5
103	The Synthesis of Dyads With One Prismatic Joint. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2008 , 130,	3	5
102	The kinematics of manipulators built from closed planar mechanisms 1999,		5
101	The analysis of arbitrarily-damped linear mechanical systems. <i>Archive of Applied Mechanics</i> , 1999 , 69, 529-541	2.2	5
100	Singularity analysis of a general class of planar parallel manipulators		5
99	The Kinematics of Spatial Double-Triangular Parallel Manipulators. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1995 , 117, 658-661	3	5
98	Kinematic Analysis of the Planar Motion of Vehicles when Traveling Along Tractrix Curves. <i>Journal of Mechanisms and Robotics</i> , 2020 , 12,	2.2	5
97	The Dual Generalized Inverses and Their Applications in Kinematic Synthesis 2012 , 1-10		5
96	Mobility and singularity analyses of a symmetric multi-loop mechanism for space applications. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> ,095440622199555	1.3	5
95	Reflections Over the Dual RingApplications to Kinematic Synthesis. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2019 , 141,	3	4
94	Elastodynamics of a two-limb Schiflies motion generator. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2015 , 229, 751-764	1.3	4
93	Posture Optimization of a Functionally Redundant Parallel Robot. <i>Springer Proceedings in Advanced Robotics</i> , 2018 , 101-108	0.6	4
92	Base curves of involute cylindrical gears via Aronhold first theorem. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2016 , 230, 1233-1242	1.3	4
92		2.1	4
	of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016 , 230, 1233-1242		

88	The Design Optimization of Cam Mechanisms With Oscillating Flat-Face Followers Under Curvature Constraints. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1994 , 116, 311-314	3	4
87	On rotation representations in computational robot kinematics. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 1994 , 9, 5-23	2.9	4
86	On the application of Mohr's circle to 2-dof vibration analysis: A tutorial. <i>Journal of Sound and Vibration</i> , 1992 , 154, 556-567	3.9	4
85	Constrained Design Optimization Using Orthogonal Decomposition. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1990 , 112, 255-256	3	4
84	A novel prosthetic finger design with high load-carrying capacity. <i>Mechanism and Machine Theory</i> , 2021 , 156, 104121	4	4
83	The decoupling of the Cartesian stiffness matrix in the design of microaccelerometers. <i>Multibody System Dynamics</i> , 2015 , 34, 1-21	2.8	3
82	On the use of the dual EulerRodrigues parameters in the numerical solution of the inverse-displacement problem. <i>Mechanism and Machine Theory</i> , 2018 , 125, 21-33	4	3
81	The design for isotropy of a class of six-dof parallel-kinematics machines. <i>Mechanism and Machine Theory</i> , 2018 , 126, 34-48	4	3
80	An Algorithm for Rigid-Body Angular Velocity and Attitude Estimation Based on Isotropic Accelerometer Strapdowns. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2018 , 85,	2.7	3
79	Heuristic Algorithm for Velocity Scheduling with a Schliflies-Motion Generator. <i>Mechanisms and Machine Science</i> , 2019 , 2411-2419	0.3	3
78	Optimum structural design of a two-limb Schliflies motion generator. <i>Mechanism and Machine Theory</i> , 2014 , 80, 125-141	4	3
77	From the McGill pepper-mill carrier to the Kindai ATARIGI Carrier: A novel two limbs six-dof parallel robot with kinematic and actuation redundancy 2017 ,		3
76	Kinematics simulation and control design of the Agile Wrist in a Dual-arm robotic mechanical systems 2012 ,		3
75	Optimum design of a spherical quasi-homokinetic linkage for motion transmission between orthogonal axes. <i>Mechanism and Machine Theory</i> , 2013 , 59, 107-118	4	3
74	Derivation of the Mass Matrix for the McGill Schfiflies Motion Generator. <i>Mechanics Based Design of Structures and Machines</i> , 2011 , 39, 159-178	1.7	3
73	The development of quasiholonomic wheeled robots		3
72	Attitude calibration of an accelerometer array		3
71	A numerical evaluation of the workspace of a seven-axis, redundant manipulator		3

70	Singularity Analysis of a General Class of Planar Parallel Manipulators		3
69	THE CONSTRAINED LEAST-SQUARE OPTIMIZATION OF SPHERICAL FOUR-BAR LINKAGES FOR RIGID-BODY GUIDANCE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1992 , 16, 47-1	60 ^{1.1}	3
68	Profile determination of a drop of liquid under surface tension, gravity and centrifugal forces. <i>Computational Mechanics</i> , 1989 , 4, 329-344	4	3
67	DYNAMICS OF FLEXIBLE MULTIBODY MECHANICAL SYSTEMS. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1991 , 15, 235-256	1.1	3
66	Optimierung ebener, sphtischer und rümlicher getriebe zur approximierten lagenzuordnung. <i>Mechanism and Machine Theory</i> , 1986 , 21, 187-197	4	3
65	The Computational Fundamentals of Spatial Cycloidal Gearing 2009 , 375-384		3
64	Exact Path Synthesis of RCCC linkages for a Maximum of Nine Prescribed Positions. <i>Journal of Mechanisms and Robotics</i> ,1-14	2.2	3
63	Receding-Horizon Vision Guidance with Smooth Trajectory Blending in the Field of View of Mobile Robots. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 676	2.6	2
62	. IEEE Access, 2020 , 8, 58483-58496	3.5	2
61	Full-Mobility Three-CCC Parallel-Kinematics Machines: Kinematics and Isotropic Design. <i>Journal of Mechanisms and Robotics</i> , 2018 , 10,	2.2	2
60	Elastostatics of a Full-Mobility PKM with Flexible Links. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2019 , 34-41	0.6	2
59	Fatigue exhaustion of the mitral valve tissue. <i>Biomechanics and Modeling in Mechanobiology</i> , 2019 , 18, 89-97	3.8	2
58	The Synthesis of Spherical Motion Generators in the Presence of an Incomplete Set of Attitudes. <i>Journal of Mechanisms and Robotics</i> , 2014 , 6,	2.2	2
57	On the reduction of the normality conditions in equality-constrained optimization problems in mechanics. <i>Meccanica</i> , 2012 , 47, 755-768	2.1	2
56	Parameter identification of the testbed of a novel gearless pitch-roll wrist. <i>Mechanical Systems and Signal Processing</i> , 2013 , 41, 71-85	7.8	2
55	Effect of normal force dispersion on the mobility of wheeled robots operating on soft soil 2014,		2
54	A COMPREHENSIVE SOLUTION OF THE CLASSIC BURMESTER PROBLEM. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2008 , 32, 137-154	1.1	2
53	On the interaction of flexible modes and on-off thrusters in space robotic systems		2

52	Displacement analysis of a six-degree-of-freedom hybrid hand controller		2
51	Die theoretischen grundlagen zur behandlung algebraischer singularit t en der kinematischen koordinatenumkehr in der robotertechnik. <i>Mechanism and Machine Theory</i> , 1991 , 26, 315-322	4	2
50	The Evaluation of Moments of 3-D Solids of Revolution Using Spline Approximations of the Boundary. <i>Journal of Mechanical Design, Transactions of the ASME</i> , 1990 , 112, 108-110	3	2
49	A spline-based method of solution of nonlinear two-point boundary-value problems. <i>Computers and Mathematics With Applications</i> , 1986 , 12, 969-985	2.7	2
48	Simulation of finite-dimensional linear dynamical systems using zero-order holds and numerical-stabilization methods. <i>Computers and Mathematics With Applications</i> , 1988 , 16, 307-320	2.7	2
47	Design of Isotropic Accelerometer Strapdowns for Rigid-Body Pose-and-Twist Estimation 2013,		2
46	Design Specifications for Biaxial Navigation-Grade MEMS Accelerometers 2014 ,		2
45	Stiffness Optimization of Delta Robots. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2021 , 396-404	0.6	2
44	Minimization of Power Losses in Cooperating Manipulators 1991,		2
43	Mobility Assessment of Wheeled Robots Operating on Soft Terrain. <i>Springer Tracts in Advanced Robotics</i> , 2016 , 331-344	0.5	2
42	The kinematics and design for quasi-isotropy of 3U serial manipulators with reduced wrists. <i>Mechanism and Machine Theory</i> , 2020 , 154, 104035	4	2
41	A novel capacitive sensing structure for simultaneous detection of biaxial low-g acceleration in a commercial MEMS process. <i>Microsystem Technologies</i> , 2019 , 25, 4475-4481	1.7	1
40	A class of biaxial micro/meso-scale structures for isotropic in-plane inertial sensing and actuation: design, fabrication and experiments. <i>Microsystem Technologies</i> , 2020 , 26, 2639-2648	1.7	1
39	Design of a biaxial high frequency-ratio low-g MEMS accelerometer. <i>Microsystem Technologies</i> , 2018 , 24, 3851-3861	1.7	1
38	Decoupling of the Cartesian Stiffness Matrix: A Case Study on Accelerometer Design 2011,		1
37	Design and Implementation of a Quasiholonomic Mobile Robot. <i>Proceedings - IEEE International Conference on Robotics and Automation</i> , 2007 ,		1
36	A PARAMETRIC STUDY OF PLANAR CAM-ROLLER SPEED REDUCERS. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2004 , 28, 263-275	1.1	1
35	A Novel Approach to the Teaching of Planar Mechanism Dynamics 🖪 Case Study. <i>International Journal of Mechanical Engineering Education</i> , 2003 , 31, 201-214	0.6	1

34	Singularity analysis of three-legged parallel robots based on passive-joint velocities		1
33	A control scheme for the reduction of thruster-manipulator interactions in space robotic systems		1
32	The mathematics of motion for computer animation: A case study. <i>Mathematical and Computer Modelling</i> , 1991 , 15, 61-77		1
31	Closure to D iscussion of D ynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement[1992, ASME J. Appl Mech., 59, pp. 242243). <i>Journal of Applied Mechanics, Transactions ASME</i> , 1992 , 59, 243-244	2.7	1
30	Design philosophy of an isotropic six-axis serial manipulator. <i>Robotics and Computer-Integrated Manufacturing</i> , 1993 , 10, 275-286	9.2	1
29	The synthesis of smooth Cartesian trajectories for pick-and-place operations of spherical wrists. <i>Mechanism and Machine Theory</i> , 1993 , 28, 261-269	4	1
28	Formulas for Dynamic Analysis. <i>Applied Mechanics Reviews</i> , 2002 , 55, B3-B4	8.6	1
27	The Modeling of Redundantly Actuated Mechanical Systems. <i>Journal of Mechanisms and Robotics</i> , 2019 , 11,	2.2	1
26	Vibration of Strongly Nonlinear Discontinuous Systems. Foundations of Engineering Mechanics. <i>Applied Mechanics Reviews</i> , 2002 , 55, B65-B66	8.6	1
25	Optimum Design of a Pan-Tilt Drive for Parallel Robots 2010 , 169-176		1
25	Optimum Design of a Pan-Tilt Drive for Parallel Robots 2010 , 169-176 A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015 , 521-529	0.3	1
	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> ,	0.3	
24	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015 , 521-529 Design Challenges in the Development of Fast Pick-and-place Robots. <i>CISM International Centre for</i>		1
24	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015 , 521-529 Design Challenges in the Development of Fast Pick-and-place Robots. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2013 , 61-68 Design of a Modular Swift-shift Multi-speed Transmission with Double Dual Clutches for Electric	0.6	1
24	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015 , 521-529 Design Challenges in the Development of Fast Pick-and-place Robots. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2013 , 61-68 Design of a Modular Swift-shift Multi-speed Transmission with Double Dual Clutches for Electric Vehicles. <i>World Electric Vehicle Journal</i> , 2016 , 8, 184-195 DYNAMICS OF TWO COOPERATING FLEXIBLE-LINK MANIPULATORSPLANAR CASE. <i>Transactions</i>	0.6	1 1
24 23 22 21	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015, 521-529 Design Challenges in the Development of Fast Pick-and-place Robots. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2013, 61-68 Design of a Modular Swift-shift Multi-speed Transmission with Double Dual Clutches for Electric Vehicles. <i>World Electric Vehicle Journal</i> , 2016, 8, 184-195 DYNAMICS OF TWO COOPERATING FLEXIBLE-LINK MANIPULATORSPLANAR CASE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1997, 21, 1-17 Robustness to algorithmic singularities and sensitivity in computational kinematics. <i>Proceedings of</i>	0.6	1 1
24 23 22 21 20	A Solution to the Approximate Spherical Burmester Problem. <i>Mechanisms and Machine Science</i> , 2015 , 521-529 Design Challenges in the Development of Fast Pick-and-place Robots. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2013 , 61-68 Design of a Modular Swift-shift Multi-speed Transmission with Double Dual Clutches for Electric Vehicles. <i>World Electric Vehicle Journal</i> , 2016 , 8, 184-195 DYNAMICS OF TWO COOPERATING FLEXIBLE-LINK MANIPULATORS LANAR CASE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1997 , 21, 1-17 Robustness to algorithmic singularities and sensitivity in computational kinematics. <i>Proceedings of the Institution of Mechanical Engineers</i> , <i>Part C: Journal of Mechanical Engineering Science</i> , 2011 , 225, 987 Feedback Control of Planar Linkages Using a Linearizing Filter: Theory and Experiments. <i>Multibody</i>	0.6 2.5 1.1	1 1

16	FORCE-AND-MOTION-TRANSMISSION EVALUATION IN SPATIAL MECHANISMS. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2005 , 29, 527-539	1.1
15	The synthesis of a multi-step cam mechanism to drive a shaking belt conveyor. <i>Mechanism and Machine Theory</i> , 1996 , 31, 913-924	4
14	EFFICIENT SIMULATION ALGORITHM FOR ROBOTIC MANIPULATOR DYNAMICS. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 1990 , 14, 137-142	1.1
13	Dual Least Squares and the Characteristic Length: Applications to Kinematic Synthesis. <i>Mechanisms and Machine Science</i> , 2021 , 104-113	0.3
12	Discussion: Position Analysis in Analytical (sic) Form of the 3-PSP Mechanism[Di Gregorio, R., and Parenti-Castelli, V., 2001, ASME J. Mech. Des., 123, pp. 5185). <i>Journal of Mechanical Design, Transactions of the ASME</i> , 2001 , 123, 56-56	3
11	THE KINEMATICS OF MOBILE ROBOTS WITH ORIENTABLE SINGLE AND DUAL WHEELS ROLLING ON A PLANE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2004 , 28, 251-262	1.1
10	Stratgies de conception pour optimiser la transmission Slide-o-Cam. <i>Mecanique Et Industries</i> , 2006 , 7, 301-309	
9	Workspace Analysis and Torque Optimization on a Schfiflies-Motion Generator. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2021 , 449-457	0.6
8	Simulation of n-dof Systems. <i>Mechanical Engineering Series</i> , 2011 , 419-454	0.3
7	Simulation of n-dof Systems. <i>Mechanical Engineering Series</i> , 2011 , 419-454 Elastodynamics of a parallel Schfiflies-motion generator. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2020 , 44, 511-519	0.3
	Elastodynamics of a parallel Schiflies-motion generator. <i>Transactions of the Canadian Society for</i>	·
7	Elastodynamics of a parallel Schillflies-motion generator. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2020 , 44, 511-519 DESIGN OF A PITCH-ROLL JOYSTICK BASED ON A THREE-LOBE SPHERICAL CAM MECHANISM.	1.1
7	Elastodynamics of a parallel Schifflies-motion generator. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2020 , 44, 511-519 DESIGN OF A PITCH-ROLL JOYSTICK BASED ON A THREE-LOBE SPHERICAL CAM MECHANISM. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 113-124 MECHATRONICS DESIGN OF AN X-BY-WIRE PROTOTYPE OF AN ELECTRIC VEHICLE. <i>Transactions of</i>	1.1
7 6 5	Elastodynamics of a parallel Schiiflies-motion generator. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2020 , 44, 511-519 DESIGN OF A PITCH-ROLL JOYSTICK BASED ON A THREE-LOBE SPHERICAL CAM MECHANISM. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 113-124 MECHATRONICS DESIGN OF AN X-BY-WIRE PROTOTYPE OF AN ELECTRIC VEHICLE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 231-242 DESIGN OF A SPHERICAL CAM-ROLLER MECHANISM FOR AN AUTOMOTIVE DIFFERENTIAL.	1.1
7 6 5	Elastodynamics of a parallel Schifflies-motion generator. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2020 , 44, 511-519 DESIGN OF A PITCH-ROLL JOYSTICK BASED ON A THREE-LOBE SPHERICAL CAM MECHANISM. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 113-124 MECHATRONICS DESIGN OF AN X-BY-WIRE PROTOTYPE OF AN ELECTRIC VEHICLE. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 231-242 DESIGN OF A SPHERICAL CAM-ROLLER MECHANISM FOR AN AUTOMOTIVE DIFFERENTIAL. <i>Transactions of the Canadian Society for Mechanical Engineering</i> , 2016 , 40, 243-252 On the Modeling of Redundantly-Actuated Mechanical Systems. <i>Computational Methods in Applied</i>	1.1 1.1 1.1