Sara E Kuebbing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794523/publications.pdf

Version: 2024-02-01

40 papers

1,719 citations

³⁶¹⁴¹³
20
h-index

36 g-index

43 all docs 43 docs citations

times ranked

43

2444 citing authors

#	Article	IF	CITATIONS
1	Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 2019, 221, 233-246.	7.3	281
2	Beyond nutrients: a metaâ€analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 2017, 98, 2111-2119.	3.2	192
3	Current mismatch between research and conservation efforts: The need to study co-occurring invasive plant species. Biological Conservation, 2013, 160, 121-129.	4.1	148
4	Negative, neutral, and positive interactions among nonnative plants: patterns, processes, and management implications. Global Change Biology, 2015, 21, 926-934.	9.5	119
5	Invasive Species: to eat or not to eat, that is the question. Conservation Letters, 2012, 5, 334-341.	5.7	115
6	The Scaling of Genome Size and Cell Size Limits Maximum Rates of Photosynthesis with Implications for Ecological Strategies. International Journal of Plant Sciences, 2020, 181, 75-87.	1.3	96
7	Two coâ€occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. Journal of Applied Ecology, 2014, 51, 124-133.	4.0	79
8	Invasive non-native plants have a greater effect on neighbouring natives than other non-natives. Nature Plants, 2016, 2, 16134.	9.3	76
9	Longâ€term research in ecology and evolution: a survey of challenges and opportunities. Ecological Monographs, 2018, 88, 245-258.	5.4	53
10	Trends in ecology and conservation over eight decades. Frontiers in Ecology and the Environment, 2021, 19, 274-282.	4.0	48
11	Potential problems of removing one invasive species at a time: a meta-analysis of the interactions between invasive vertebrates and unexpected effects of removal programs. Peerl, 2016, 4, e2029.	2.0	40
12	Linking functional diversity and ecosystem processes: A framework for using functional diversity metrics to predict the ecosystem impact of functionally unique species. Journal of Ecology, 2018, 106, 687-698.	4.0	39
13	Plant phenological responses to experimental warmingâ€"A synthesis. Global Change Biology, 2021, 27, 4110-4124.	9.5	39
14	Missing the bandwagon: Nonnative species impacts still concern managers. NeoBiota, 0, 25, 73-86.	1.0	33
15	Effects of co-occurring non-native invasive plant species on old-field succession. Forest Ecology and Management, 2014, 324, 196-204.	3.2	30
16	Factors driving natural regeneration beneath a planted urban forest. Urban Forestry and Urban Greening, 2018, 29, 238-247.	5.3	29
17	Plant–soil interactions promote coâ€occurrence of three nonnative woody shrubs. Ecology, 2015, 96, 2289-2299.	3.2	28
18	Mentorship, equity, and research productivity: lessons from a pandemic. Biological Conservation, 2021, 255, 108966.	4.1	28

#	Article	IF	Citations
19	Coâ€occurring nonnative woody shrubs have additive and nonâ€additive soil legacies. Ecological Applications, 2016, 26, 1896-1906.	3.8	26
20	Impacts of an invasive plant are fundamentally altered by a coâ€occurring forest disturbance. Ecology, 2017, 98, 2133-2144.	3.2	26
21	The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. New Phytologist, 2022, 235, 1701-1718.	7.3	25
22	Above―and belowâ€ground effects of plant diversity depend on species origin: an experimental test with multiple invaders. New Phytologist, 2015, 208, 727-735.	7.3	24
23	Resource availability and plant diversity explain patterns of invasion of an exotic grass. Journal of Plant Ecology, 2013, 6, 141-149.	2.3	20
24	Ericoid mycorrhizal shrubs alter the relationship between tree mycorrhizal dominance and soil carbon and nitrogen. Journal of Ecology, 2021, 109, 3524-3540.	4.0	19
25	Invasive lianas are drivers of and passengers to altered soil nutrient availability in urban forests. Biological Invasions, 2020, 22, 935-955.	2.4	15
26	The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of nonâ€native invasive plants on carbon mineralization of decomposing leaf litter. Functional Ecology, 2019, 33, 1156.	3.6	14
27	Two decades of data reveal that Biological Invasions needs to increase participation beyond North America, Europe, and Australasia. Biological Invasions, 2022, 24, 333-340.	2.4	13
28	Nonnative oldâ€field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere, 2020, 11, e03217.	2.2	12
29	Positive longâ€ŧerm impacts of restoration on soils in an experimental urban forest. Ecological Applications, 2021, 31, e02336.	3.8	12
30	Using Convolutional Neural Networks to Efficiently Extract Immense Phenological Data From Community Science Images. Frontiers in Plant Science, 2021, 12, 787407.	3.6	11
31	Current understanding of invasive species impacts cannot be ignored: potential publication biases do not invalidate findings. Biodiversity and Conservation, 2018, 27, 1545-1548.	2.6	5
32	Land-use history and abiotic gradients drive abundance of non-native shrubs in Appalachian second-growth forests with histories of mining, agriculture, and logging. Forest Ecology and Management, 2021, 494, 119296.	3.2	5
33	A self-study of editorial board diversity at Biological Invasions. Biological Invasions, 2022, 24, 321.	2.4	5
34	Words matter: how to increase gender and LGBTQIA + inclusivity atÂBiological Invasions. Biological Invasions, 0, , 1.	2.4	4
35	The Plant Science Blogging Project: A curriculum to develop student science communication skills. Plants People Planet, 2022, 4, 485-498.	3.3	3
36	A generalist nematode destabilises plant competition: no evidence for direct effects, but strong evidence for indirect effects on rhizobium abundance. New Phytologist, 2022, 233, 2561-2572.	7.3	2

SARA E KUEBBING

#	Article	IF	CITATION
37	Honoring Daniel Simberloff: an unwavering champion of invasion biology. Biological Invasions, 2018, 20, 3379-3383.	2.4	1
38	Recurrent neural network reveals overwhelming sentiment against 2017 review of US monuments from humans and bots. Conservation Letters, 2020, 13, e12747.	5.7	1
39	Announcing the inaugural winners of the Simberloff Award for Outstanding Presentation. Biological Invasions, 2018, 20, 3377-3378.	2.4	O
40	Announcing the winners of the second annual Simberloff Award for outstanding presentation. Biological Invasions, 2020, 22, 851-852.	2.4	0