
Robert A Linsenmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular K+ reflects light-evoked changes in retinal energy metabolism. Experimental Eye Research, 2022, 221, 109133.	2.6	3
2	K ⁺ -dependent Müller cell-generated components of the electroretinogram. Visual Neuroscience, 2021, 38, E010.	1.0	8
3	Intravenous Immunomodulatory Nanoparticle Treatment for Traumatic Brain Injury. Annals of Neurology, 2020, 87, 442-455.	5.3	29
4	Intravenous ketamine for long term anesthesia in rats. Heliyon, 2020, 6, e05686.	3.2	5
5	Core Competencies for Undergraduates in Bioengineering and Biomedical Engineering: Findings, Consequences, and Recommendations. Annals of Biomedical Engineering, 2020, 48, 905-912.	2.5	37
6	Fifty Years of Biomedical Engineering Undergraduate Education. Annals of Biomedical Engineering, 2020, 48, 1590-1615.	2.5	42
7	Retinal Bioengineering. , 2020, , 581-637.		0
8	Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. Journal of Clinical Medicine, 2019, 8, 1165.	2.4	42
9	Improved Macular Capillary Flow on Optical Coherence Tomography Angiography After Panretinal Photocoagulation for Proliferative Diabetic Retinopathy. American Journal of Ophthalmology, 2019, 206, 217-227.	3.3	48
10	The logic of ionic homeostasis: Cations are for voltage, but not for volume. PLoS Computational Biology, 2019, 15, e1006894.	3.2	15
11	Diabetes Alters pH Control in Rat Retina. , 2019, 60, 723.		10
12	Emixustat Reduces Metabolic Demand of Dark Activity in the Retina. , 2019, 60, 4924.		16
13	Retinal pH and Acid Regulation During Metabolic Acidosis. Current Eye Research, 2018, 43, 902-912.	1.5	13
14	Brain tissue oxygen regulation in awake and anesthetized neonates. Neuropharmacology, 2018, 135, 368-375.	4.1	14
15	Retinal oxygen: from animals to humans. Progress in Retinal and Eye Research, 2017, 58, 115-151.	15.5	170
16	Increased Retinal Oxygen Metabolism Precedes Microvascular Alterations in Type 1 Diabetic Mice. , 2017, 58, 981.		27
17	In memory of Christina Enroth-Cugell, distinguished vision scientist. Experimental Eye Research, 2016, 151, 45-46.	2.6	0
18	Development of diabetes-induced acidosis in the rat retina. Experimental Eye Research, 2016, 149, 16-25.	2.6	15

ROBERT A LINSENMEIER

#	Article	IF	CITATIONS
19	Light-induced pH changes in the intact retinae of normal and early diabetic rats. Experimental Eye Research, 2016, 145, 148-157.	2.6	10
20	Spontaneous Fluctuations of PO2 in the Rabbit Somatosensory Cortex. Advances in Experimental Medicine and Biology, 2016, 876, 311-317.	1.6	10
21	Retinal oxygen extraction in humans. Scientific Reports, 2015, 5, 15763.	3.3	56
22	Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light: Science and Applications, 2015, 4, e334-e334.	16.6	133
23	Association of Diabetic Macular Nonperfusion With Outer Retinal Disruption on Optical Coherence Tomography. JAMA Ophthalmology, 2015, 133, 1036.	2.5	105
24	Increased Intraretinal PO2 in Short-Term Diabetic Rats. Diabetes, 2014, 63, 4338-4342.	0.6	18
25	A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Scientific Reports, 2014, 4, 6525.	3.3	106
26	Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina. Molecular Vision, 2013, 19, 1538-53.	1.1	23
27	Oxygen consumption and distribution in the Long-Evans rat retina. Experimental Eye Research, 2012, 102, 50-58.	2.6	57
28	Effect of isoflurane on brain tissue oxygen tension and cerebral autoregulation in rabbits. Neuroscience Letters, 2012, 524, 116-118.	2.1	9
29	24â€h Core Temperature in Obese and Lean Men and Women. Obesity, 2012, 20, 1585-1590.	3.0	41
30	Decreased Circulation in the Feline Choriocapillaris Underlying Retinal Photocoagulation Lesions. , 2011, 52, 3398.		24
31	Metabolic Responses to Light in Monkey Photoreceptors. Current Eye Research, 2010, 35, 510-518.	1.5	18
32	Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance. Metabolism: Clinical and Experimental, 2009, 58, 871-876.	3.4	60
33	Gene expression patterns in hypoxic and post-hypoxic adult rat retina with special reference to the NMDA receptor and its interactome. Molecular Vision, 2009, 15, 296-311.	1.1	18
34	Effects of Photocoagulation on Intraretinal P <scp>o</scp> ₂ in Cat. , 2008, 49, 380.		52
35	Effect of Carbogen (95% O ₂ /5% CO ₂) on Retinal Oxygenation in Dark-Adapted Anesthetized Cats. Current Eye Research, 2007, 32, 699-707.	1.5	10
36	Oxygen distribution and consumption in the macaque retina. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1696-H1704.	3.2	203

ROBERT A LINSENMEIER

#	Article	IF	CITATIONS
37	Hyperoxia Improves Oxygen Consumption in the Detached Feline Retina. , 2007, 48, 1335.		37
38	Work in progress - assessment of an electronic learning management system In bioengineering. Proceedings - Frontiers in Education Conference, FIE, 2007, , .	0.0	2
39	Retinal Oxygenation and Oxygen Metabolism in Abyssinian Cats with a Hereditary Retinal Degeneration. , 2006, 47, 3683.		82
40	Instructor and Course Changes Resulting from an HPL-inspired Use of Personal Response Systems. , 2006, , .		2
41	Intraretinal pH in Diabetic Cats. Current Eye Research, 2005, 30, 229-240.	1.5	28
42	Effect of Hypoxemia and Hyperglycemia on pH in the Intact Cat Retina. JAMA Ophthalmology, 2005, 123, 1684.	2.4	32
43	Retinal arterial occlusion leads to acidosis in the cat. Experimental Eye Research, 2005, 80, 527-533.	2.6	23
44	Hyperoxia Promotes Electroretinogram Recovery after Retinal Artery Occlusion in Cats. , 2004, 45, 3690.		10
45	What makes a biomedical engineer?. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 32-38.	0.8	31
46	Retinal Oxygen. JAMA Ophthalmology, 2003, 121, 547.	2.4	481
47	Effect of Acute Hyperglycemia on Oxygen and Oxidative Metabolism in the Intact Cat Retina. , 2003, 44, 745.		22
48	Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Visual Neuroscience, 2002, 19, 793-806.	1.0	38
49	Intraretinal analysis of the <i>a</i> -wave of the electroretinogram (ERG) in dark-adapted intact cat retina. Visual Neuroscience, 2001, 18, 353-363.	1.0	26
50	Hypoglycemia increases the sensitivity of the cat electroretinogram to hypoxemia. Visual Neuroscience, 2001, 18, 983-993.	1.0	13
51	Oxygenation of the cat primary visual cortex. Journal of Applied Physiology, 1999, 86, 1490-1496.	2.5	18
52	Perfluorocarbon emulsion improves oxygenation of the cat primary visual cortex. Journal of Applied Physiology, 1999, 86, 1497-1504.	2.5	12
53	Isovolemic hemodilution increases retinal tissue oxygen tension. Graefe's Archive for Clinical and Experimental Ophthalmology, 1996, 234, 688-694.	1.9	19
54	Oxygen consumption in the isolated toad retina. Experimental Eye Research, 1995, 61, 63-72.	2.6	18

#	Article	IF	CITATIONS
55	Light-evoked oxygen responses in the isolated toad retina. Experimental Eye Research, 1995, 61, 73-81.	2.6	26
56	Spontaneous fluctuations in oxygen tension in the cat retina. Microvascular Research, 1992, 44, 73-84.	2.5	28
57	Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Annals of Biomedical Engineering, 1990, 18, 19-36.	2.5	100
58	Spatial Variation of the Local Tissue Oxygen Diffusion Coefficient Measured in situ in the Cat Retina and Cornea. Advances in Experimental Medicine and Biology, 1990, 277, 127-136.	1.6	19
59	Estimation of retinal oxygen transients from measurements made in the vitreous humor. Experimental Eye Research, 1981, 32, 369-379.	2.6	45