
Ignacio J Lorite Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Almond responses to a single season of severe irrigation water restrictions. Irrigation Science, 2022, 40, 1-11.	1.3	5
2	Enhancing the sustainability of Mediterranean olive groves through adaptation measures to climate change using modelling and response surfaces. Agricultural and Forest Meteorology, 2022, 313, 108742.	1.9	6
3	Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 2022, 12, 4049.	1.6	9
4	Utility of EST-SNP Markers for Improving Management and Use of Olive Genetic Resources: A Case Study at the Worldwide Olive Germplasm Bank of Córdoba. Plants, 2022, 11, 921.	1.6	20
5	Long-term almond yield response to deficit irrigation. Irrigation Science, 2021, 39, 409-420.	1.3	20
6	Impact of climate change on economic components of Mediterranean olive orchards. Agricultural Water Management, 2021, 248, 106760.	2.4	2
7	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	2.2	6
8	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	2.6	18
9	Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environmental and Experimental Botany, 2020, 180, 104239.	2.0	18
10	Understanding effects of genotype × environment × sowing window interactions for durum wheat in the Mediterranean basin. Field Crops Research, 2020, 259, 107969.	2.3	18
11	The role of phenology in the climate change impacts and adaptation strategies for tree crops: a case study on almond orchards in Southern Europe. Agricultural and Forest Meteorology, 2020, 294, 108142.	1.9	30
12	ldentifying adaptation strategies to climate change for Mediterranean olive orchards using impact response surfaces. Agricultural Systems, 2020, 185, 102937.	3.2	24
13	Water Stress Enhances the Progression of Branch Dieback and Almond Decline under Field Conditions. Plants, 2020, 9, 1213.	1.6	11
14	METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environmental Modelling and Software, 2020, 131, 104770.	1.9	10
15	Phenological diversity in a World Olive Germplasm Bank: Potential use for breeding programs and climate change studies. Spanish Journal of Agricultural Research, 2020, 18, e0701.	0.3	15
16	Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management. Agricultural Water Management, 2019, 223, 105718.	2.4	5
17	Genotype, environment and their interaction effects on olive tree flowering phenology and flower quality. Euphytica, 2019, 215, 1.	0.6	21
18	Transpiration from canopy temperature: Implications for the assessment of crop yield in almond orchards. European Journal of Agronomy, 2019, 105, 78-85.	1.9	32

#	Article	IF	CITATIONS
19	Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 88-102.	1.4	27
20	Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.	1.9	35
21	Almond tree response to a change in wetted soil volume under drip irrigation. Agricultural Water Management, 2018, 202, 57-65.	2.4	12
22	Yield response of almond trees to transpiration deficits. Irrigation Science, 2018, 36, 111-120.	1.3	17
23	Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 2018, 204, 247-261.	2.4	44
24	Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 2018, 159, 260-274.	3.2	68
25	Water use of irrigated almond trees when subjected to water deficits. Agricultural Water Management, 2018, 195, 84-93.	2.4	41
26	Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.	3.2	47
27	Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 2018, 216, 129-140.	2.3	173
28	Flowering phenology and flower quality of cultivars â€~Arbequina', â€~Koroneiki' and â€~Picual' in diff environments of southern Spain. Acta Horticulturae, 2018, , 257-262.	erent 0.1	4
29	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	5.8	230
30	Usefulness of a New Large Set of High Throughput EST-SNP Markers as a Tool for Olive Germplasm Collection Management. Frontiers in Plant Science, 2018, 9, 1320.	1.7	57
31	Water Management and Climate Change in Semiarid Environments. , 2018, , 3-40.		11
32	Water requirements of mature almond trees in response to atmospheric demand. Irrigation Science, 2018, 36, 271-280.	1.3	13
33	Evaluating the impact of adjusting surface temperature derived from Landsat 7 ETM+ in crop evapotranspiration assessment using high-resolution airborne data. International Journal of Remote Sensing, 2017, 38, 4177-4205.	1.3	15
34	Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. International Journal of Climatology, 2017, 37, 940-957.	1.5	56
35	Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM. Field Crops Research, 2017, 214, 239-254.	2.3	21
36	Responses of transpiration and transpiration efficiency of almond trees to moderate water deficits. Scientia Horticulturae, 2017, 225, 6-14.	1.7	28

#	Article	IF	CITATIONS
37	Assessing reference evapotranspiration at regional scale based on remote sensing, weather forecast and GIS tools. International Journal of Applied Earth Observation and Geoinformation, 2017, 55, 32-42.	1.4	17
38	Modelling the impact of heat stress on maize yield formation. Field Crops Research, 2016, 198, 226-237.	2.3	72
39	Yield response of sunflower to irrigation and fertilization under semi-arid conditions. Agricultural Water Management, 2016, 176, 151-162.	2.4	26
40	Uncertainty in estimating reference evapotranspiration using remotely sensed and forecasted weather data under the climatic conditions of Southern Spain. International Journal of Climatology, 2015, 35, 3371-3384.	1.5	17
41	Modeling to Evaluate and Manage Climate Change Effects on Water Use in Mediterranean Olive Orchards with Respect to Cover Crops and Tillage Management. Advances in Agricultural Systems Modeling, 2015, , 237-265.	0.3	11
42	Exploring Treated Wastewater Issues Related to Agriculture in Europe, Employing a Quantitative SWOT Analysis. Procedia Economics and Finance, 2015, 33, 367-375.	0.6	21
43	Transpiration of young almond trees in relation to intercepted radiation. Irrigation Science, 2015, 33, 265-275.	1.3	35
44	Effect of the irrigation dose on Verticillium wilt of olive. Scientia Horticulturae, 2015, 197, 564-567.	1.7	6
45	Using weather forecast data for irrigation scheduling under semi-arid conditions. Irrigation Science, 2015, 33, 411-427.	1.3	53
46	The Influence of Irrigation Frequency on the Onset and Development of Verticillium Wilt of Olive. Plant Disease, 2015, 99, 488-495.	0.7	22
47	Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain. Climate Research, 2015, 65, 159-173.	0.4	19
48	Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.	0.4	122
49	ASSESING ALMOND ORCHARD WATER USE: EVALUATION OF METHODS. Acta Horticulturae, 2014, , 341-345.	0.1	0
50	Olive Cultivation, its Impact on Soil Erosion and its Progression into Yield Impacts in Southern Spain in the Past as a Key to a Future of Increasing Climate Uncertainty. Agriculture (Switzerland), 2014, 4, 170-198.	1.4	92
51	Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling. Climatic Change, 2014, 124, 147-162.	1.7	36
52	Assessment of reference evapotranspiration using remote sensing and forecasting tools under semi-arid conditions. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 280-289.	1.4	20
53	An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions. Agricultural Water Management, 2014, 131, 135-145.	2.4	48
54	AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 2013, 96, 227-237.	3.7	56

#	Article	IF	CITATIONS
55	Assessing irrigation scheme water use and farmers' performance using wireless telemetry systems. Computers and Electronics in Agriculture, 2013, 98, 193-204.	3.7	15
56	WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop management strategies. Computers and Electronics in Agriculture, 2013, 91, 35-48.	3.7	28
57	Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain. Water Resources Management, 2012, 26, 3267-3283.	1.9	53
58	Assessment of the Irrigation Advisory Services' Recommendations and Farmers' Irrigation Management: A Case Study in Southern Spain. Water Resources Management, 2012, 26, 2397-2419.	1.9	43
59	Design and construction of a large weighing lysimeter in an almond orchard. Spanish Journal of Agricultural Research, 2012, 10, 238.	0.3	22
60	An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agricultural Water Management, 2011, 98, 1045-1061.	2.4	133
61	Performance assessment of an irrigation scheme using indicators determined with remote sensing techniques. Irrigation Science, 2010, 28, 461-477.	1.3	42
62	Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agricultural Water Management, 2010, 97, 1351-1359.	2.4	96
63	Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrigation Science, 2008, 26, 277-288.	1.3	72
64	Management trends and responses to water scarcity in an irrigation scheme of Southern Spain. Agricultural Water Management, 2008, 95, 458-468.	2.4	57
65	Estimating the Soil Surface Evaporation and Transpiration Components from Satellite Images in the Absence of a Thermal Band. , 2008, , .		4
66	Integration of satellite-based energy balance with simulation models applied to irrigation management at an irrigation scheme of southern Spain. Proceedings of SPIE, 2007, , .	0.8	0
67	Assessing deficit irrigation strategies at the level of an irrigation district. Agricultural Water Management, 2007, 91, 51-60.	2.4	49
68	Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering - ASCE, 2007, 133, 395-406.	0.6	572
69	Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agricultural Water Management, 2006, 81, 257-281.	2.4	243
70	Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance. Journal of Hydrology, 2005, 300, 286-299.	2.3	13
71	Evaluating irrigation performance in a Mediterranean environment. Irrigation Science, 2004, 23, 77-84.	1.3	55
72	Evaluating irrigation performance in a Mediterranean environment. Irrigation Science, 2004, 23, 85-92.	1.3	57

#	Article	IF	CITATIONS
73	Design and Management of Irrigation Systems. Chilean Journal of Agricultural Research, 0, 69, .	0.4	24
74	Irrigation Water Management in Latin America. Chilean Journal of Agricultural Research, 0, 69, .	0.4	15