Maksym Opanasenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2794047/publications.pdf

Version: 2024-02-01

85 papers

3,736 citations

32 h-index 59 g-index

90 all docs 90 docs citations

times ranked

90

4331 citing authors

#	Article	IF	CITATIONS
1	New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 1095-1149.	38.1	330
2	The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 2015, 44, 7177-7206.	38.1	275
3	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	4.1	270
4	Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology, 2013, 3, 500-507.	4.1	179
5	Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science and Technology, 2016, 6, 2467-2484.	4.1	161
6	Heterogeneous Pd catalysts supported on silica matrices. RSC Advances, 2014, 4, 65137-65162.	3.6	137
7	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	13.8	104
8	Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups. Advanced Synthesis and Catalysis, 2013, 355, 247-268.	4.3	97
9	2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials, 2019, 31, e1801712.	21.0	88
10	A novel nickel metal–organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. Dalton Transactions, 2014, 43, 3730.	3.3	83
11	Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 2013, 5, 1024-1031.	3.7	82
12	Zeolite (In)Stability under Aqueous or Steaming Conditions. Advanced Materials, 2020, 32, e2003264.	21.0	75
13	Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. Journal of the American Chemical Society, 2014, 136, 2511-2519.	13.7	74
14	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	11.2	74
15	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie - International Edition, 2017, 56, 4324-4327.	13.8	70
16	Synthesis of isomorphously substituted extra-large pore UTL zeolites. Journal of Materials Chemistry, 2012, 22, 15793.	6.7	66
17	Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catalysis Today, 2015, 243, 184-194.	4.4	66
18	Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 2013, 6, 865-871.	6.8	63

#	Article	IF	CITATIONS
19	MWW and MFI Frameworks as Model Layered Zeolites: Structures, Transformations, Properties, and Activity. ACS Catalysis, 2021, 11, 2366-2396.	11.2	63
20	Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chemistry of Materials, 2014, 26, 5789-5798.	6.7	60
21	Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on <i>cfi</i> -Type Layers. Chemistry of Materials, 2017, 29, 5605-5611.	6.7	60
22	Twinned Growth of Metalâ€Free, Triazineâ€Based Photocatalyst Films as Mixedâ€Dimensional (2D/3D) van der Waals Heterostructures. Advanced Materials, 2017, 29, 1703399.	21.0	59
23	Deactivation Pathways of the Catalytic Activity of Metal–Organic Frameworks in Condensation Reactions. ChemCatChem, 2013, 5, 1553-1561.	3.7	52
24	Synthesis and Postâ€Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19380-19389.	13.8	48
25	Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catalysis Today, 2020, 345, 48-58.	4.4	41
26	Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 2020, 345, 2-13.	4.4	40
27	Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through Polymorphism. ChemSusChem, 2019, 12, 194-199.	6.8	39
28	Fluorescent Sulphur―and Nitrogenâ€Containing Porous Polymers with Tuneable Donor–Acceptor Domains for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 11916-11921.	3.3	38
29	Postâ€Synthesis Stabilization of Germanosilicate Zeolites ITH, IWW, and UTL by Substitution of Ge for Al. Chemistry - A European Journal, 2016, 22, 17377-17386.	3.3	36
30	Tailored Band Gaps in Sulfur―and Nitrogenâ€Containing Porous Donor–Acceptor Polymers. Chemistry - A European Journal, 2017, 23, 13023-13027.	3.3	35
31	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	4.4	32
32	Microporous Lead–Organic Framework for Selective CO ₂ Adsorption and Heterogeneous Catalysis. Inorganic Chemistry, 2018, 57, 1774-1786.	4.0	31
33	Adsorption of pentane isomers on metal-organic frameworks Cu-BTC and Fe-BTC. Catalysis Today, 2015, 243, 69-75.	4.4	30
34	The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today, 2013, 204, 94-100.	4.4	29
35	Post-synthesis incorporation of Al into germanosilicate ITH zeolites: the influence of treatment conditions on the acidic properties and catalytic behavior in tetrahydropyranylation. Catalysis Science and Technology, 2015, 5, 2973-2984.	4.1	29
36	Catalytic behavior of metal-organic frameworks and zeolites: Rationalization and comparative analysis. Catalysis Today, 2015, 243, 2-9.	4.4	29

#	Article	IF	Citations
37	Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications, 2019, 10, 5129.	12.8	29
38	Metal–Organic Frameworks Mâ€MOFâ€74 and Mâ€MILâ€100: Comparison of Textural, Acidic, and Catalytic Properties. ChemPlusChem, 2016, 81, 828-835.	2.8	28
39	Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 2016, 7, 3589-3601.	7.4	26
40	Superior Activity of Isomorphously Substituted MOFs with MILâ€100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 2017, 82, 152-159.	2.8	26
41	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	3.7	25
42	Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catalysis Letters, 2018, 148, 2263-2273.	2.6	25
43	Extra‣argeâ€Pore Zeolites with UTL Topology: Control of the Catalytic Activity by Variation in the Nature of the Active Sites. ChemCatChem, 2013, 5, 1891-1898.	3.7	24
44	Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Transactions, 2014, 43, 10548.	3.3	23
45	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	4.3	23
46	Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 8235-8246.	6.7	23
47	Isoreticular UTL-Derived Zeolites as Model Materials for Probing Pore Size–Activity Relationship. ACS Catalysis, 2019, 9, 5136-5146.	11.2	22
48	Total Oxidation of Toluene and Propane over Supported Co ₃ O ₄ Catalysts: Effect of Structure/Acidity of MWW Zeolite and Cobalt Loading. ACS Applied Materials & Emp; Interfaces, 2021, 13, 15143-15158.	8.0	22
49	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	3.7	21
50	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	2.8	21
51	Molybdenum Nitrides, Carbides and Phosphides as Highly Efficient Catalysts for the (hydro)Deoxygenation Reaction. ChemistrySelect, 2019, 4, 8453-8459.	1.5	20
52	Consecutive interlayer disassembly–reassembly during alumination of UOV zeolites: insight into the mechanism. Journal of Materials Chemistry A, 2017, 5, 22576-22587.	10.3	19
53	Zeolite supported palladium catalysts for hydroalkylation of phenolic model compounds. Microporous and Mesoporous Materials, 2017, 252, 116-124.	4.4	18
54	Direct incorporation of B, Al, and Ga into medium-pore ITH zeolite: Synthesis, acidic, and catalytic properties. Catalysis Today, 2016, 277, 37-47.	4.4	17

#	Article	IF	CITATIONS
55	Mordenite nanorods and nanosheets prepared in presence of gemini type surfactants. Catalysis Today, 2019, 324, 115-122.	4.4	17
56	Modification of textural and acidic properties of -SVR zeolite by desilication. Catalysis Today, 2014, 227, 26-32.	4.4	16
57	Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching. Journal of Energy Chemistry, 2016, 25, 318-326.	12.9	16
58	Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Transactions, 2018, 47, 3084-3092.	3.3	14
59	Hierarchical Beta zeolites as catalysts in a one-pot three-component cascade Prins–Friedel–Crafts reaction. Green Chemistry, 2020, 22, 6992-7002.	9.0	14
60	Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials, 2015, 202, 297-302.	4.4	13
61	Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPCâ€12 from Zeolite UOV. Angewandte Chemie, 2017, 129, 4388-4391.	2.0	12
62	Hierarchical Beta zeolites obtained in concentrated reaction mixtures as catalysts in tetrahydropyranylation of alcohols. Applied Catalysis A: General, 2020, 594, 117380.	4.3	12
63	Tuning the CHA framework composition by isomorphous substitution for CO2/CH4 separation. Chemical Engineering Journal, 2022, 429, 131277.	12.7	12
64	Desilication of SSZ-33 zeolite – Post-synthesis modification of textural and acidic properties. Catalysis Today, 2015, 243, 46-52.	4.4	11
65	Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites. Chemistry of Materials, 2021, 33, 1228-1237.	6.7	11
66	The Effect of Synthesis Conditions and Nature of Heteroelement on Acidic Properties of Isomorphously Substituted UTL Zeolites. Advanced Porous Materials, 2013, 1, 103-113.	0.3	11
67	Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions. Frontiers in Chemistry, 2013 , 1 , 11 .	3.6	10
68	The effect of hot liquid water treatment on the properties and catalytic activity of MWW zeolites with various layered structures. Catalysis Today, 2018, 304, 22-29.	4.4	10
69	Zeolite constructor kit: Design for catalytic applications. Catalysis Today, 2018, 304, 2-11.	4.4	10
70	MOF-inorganic nanocomposites: Bridging a gap with inorganic materials. Applied Materials Today, 2022, 26, 101283.	4.3	8
71	Seeded growth of isomorphously substituted chabazites in proton-form. Microporous and Mesoporous Materials, 2019, 280, 331-336.	4.4	7
72	MWW-type zeolite nanostructures for a one-pot three-component Prinsâ€"Friedelâ€"Crafts reaction. Inorganic Chemistry Frontiers, 2022, 9, 1244-1257.	6.0	7

#	Article	IF	CITATIONS
73	Structural and sorption properties of carbon replicas obtained by matrix carbonization of organic precursors in SBA-15 and KIT-6. Theoretical and Experimental Chemistry, 2010, 46, 51-57.	0.8	5
74	Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods. Catalysis Today, 2019, 324, 123-134.	4.4	5
75	Fabrication of Hybrid Organic–Inorganic Materials with Tunable Porosity for Catalytic Application. ChemPlusChem, 2015, 80, 599-605.	2.8	4
76	High activity of Ga-containing nanosponge MTW zeolites in acylation of p-xylene. Catalysis Today, 2020, 345, 110-115.	4.4	4
77	Synthesis and Postâ€Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie, 2020, 132, 19548-19557.	2.0	4
78	Novel approach towards Al-rich AFI for catalytic application. Applied Catalysis A: General, 2019, 577, 62-68.	4.3	2
79	Synthesis of aggregation-resistant MFI nanoparticles. Catalysis Today, 2020, 354, 151-157.	4.4	2
80	Controllable zeolite AST crystallization: between the classical and reversed crystal growth. Chemistry - A European Journal, 2022, , .	3.3	2
81	Controllable Zeolite AST Crystallization: Between Classical and Reversed Crystal Growth. Chemistry - A European Journal, 0, , .	3.3	2
82	Effect of matrix polymerization conditions on the structure and adsorption properties of porous polymers on the basis of divinylbenzene, acrylonitrile, and methyl methacrylate. Theoretical and Experimental Chemistry, 2008, 44, 380-385.	0.8	1
83	Chapter 11. Zeolites for Fine Chemistry. RSC Catalysis Series, 2017, , 409-440.	0.1	1
84	Kinetics of matrix polymerization of divinylbenzene in the mesoporous molecular sieve SBA-15. Theoretical and Experimental Chemistry, 2009, 45, 362-367.	0.8	0
85	<i>In situ</i> synchrotron X-ray diffraction reveals the disassembly-organisation mechanism of germanosilicate zeolites in HCl vapour. Inorganic Chemistry Frontiers, 0, , .	6.0	O