
Huan-Chang Tseng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions. Journal of Rheology, 2013, 57, 1597-1631.	1.3	111
2	Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation. Polymer Composites, 2014, 35, 671-680.	2.3	108
3	An objective tensor to predict anisotropic fiber orientation in concentrated suspensions. Journal of Rheology, 2016, 60, 215-224.	1.3	89
4	Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites. Composites Science and Technology, 2017, 144, 51-56.	3.8	59
5	A new anisotropic viscous constitutive model for composites molding simulation. Composites Part A: Applied Science and Manufacturing, 2018, 115, 112-122.	3.8	56
6	The use of informed isotropic constitutive equation to simulate anisotropic rheological behaviors in fiber suspensions. Journal of Rheology, 2019, 63, 263-274.	1.3	50
7	Improved fiber orientation predictions for injection molded fiber composites. Composites Part A: Applied Science and Manufacturing, 2017, 99, 65-75.	3.8	41
8	A revisitation of generalized Newtonian fluids. Journal of Rheology, 2020, 64, 493-504.	1.3	27
9	Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects. Journal of Chemical Physics, 2008, 129, 014502.	1.2	26
10	The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions. Journal of Rheology, 2018, 62, 313-320.	1.3	24
11	Comparison of recent fiber orientation models in injection molding simulation of fiber-reinforced composites. Journal of Thermoplastic Composite Materials, 2020, 33, 35-52.	2.6	21
12	Simulation prediction of the fiber breakage history in regular and barrier structure screws in injection molding. Polymer Engineering and Science, 2018, 58, 452-459.	1.5	19
13	Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations. Physical Chemistry Chemical Physics, 2010, 12, 4051.	1.3	16
14	The use of shear-rate-dependent parameters to improve fiber orientation predictions for injection molded fiber composites. Composites Part A: Applied Science and Manufacturing, 2018, 104, 81-88.	3.8	16
15	A revisitation of Whiteâ^'Metzner viscoelastic fluids. Physics of Fluids, 2021, 33, .	1.6	15
16	Numerical predictions of fiber orientation and mechanical properties for injection-molded long-glass-fiber thermoplastic composites. Composites Science and Technology, 2017, 150, 181-186.	3.8	13
17	Accurate predictions of fiber orientation and mechanical properties in longâ€fiberâ€reinforced composite with experimental validation. Polymer Composites, 2018, 39, 3434-3445.	2.3	12
18	Accurate predictions of orientation dependent modulus in shortâ€fiberâ€reinforced composite with experimental validation. Polymer Composites, 2018, 39, 2847-2859.	2.3	11

HUAN-CHANG TSENG

#	Article	IF	CITATIONS
19	Master curves and radial distribution functions for shear dilatancy of liquid n-hexadecane via nonequilibrium molecular dynamics simulations. Journal of Chemical Physics, 2009, 130, 164515.	1.2	9
20	Material functions of liquid n-hexadecane under steady shear via nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects. Journal of Chemical Physics, 2009, 130, 084904.	1.2	9
21	Numerical predictions of fiber orientation and mechanical properties for injectionâ€molded longâ€carbonâ€fiber thermoplastic composites. Polymer Composites, 2018, 39, 3726-3739.	2.3	8
22	A constitutive analysis of stress overshoot for polymer melts under startup shear flow. Physics of Fluids, 2021, 33, .	1.6	8
23	A constitutive equation for fiber suspensions in viscoelastic media. Physics of Fluids, 2021, 33, .	1.6	8
24	Effect of the packing stage on fiber orientation for injection molding simulation of fiber-reinforced composites. Journal of Thermoplastic Composite Materials, 2018, 31, 1204-1218.	2.6	7
25	Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid <i>n</i> -hexadecane under shear. Journal of Chemical Physics, 2011, 134, 044511.	1.2	6
26	Coupled flow and fiber orientation analysis for 3D injection molding simulations of fiber composites. AIP Conference Proceedings, 2019, , .	0.3	4
27	Nanocontraction flows of short-chain polyethylene via molecular dynamics simulations. Molecular Simulation, 2009, 35, 691-704.	0.9	2
28	A new anisotropic flow simulation for compression molding of glass-mat thermoplastics. AIP Conference Proceedings, 2019, , .	0.3	2
29	Powder Injection Molding. , 2022, , 495-509.		0
30	Fiber Orientation Control. , 2022, , 347-377.		0

3