Farshid Pahlevani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793797/publications.pdf

Version: 2024-02-01

94 papers

1,473 citations

361045 20 h-index 395343 33 g-index

97 all docs

97
docs citations

97 times ranked 1383 citing authors

#	Article	IF	CITATIONS
1	Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. Journal of Cleaner Production, 2019, 208, 1524-1536.	4.6	100
2	Distribution of P2O5 between Solid Solution of 2CaO·SiO2–3CaO·P2O5 and Liquid Phase. ISIJ International, 2010, 50, 822-829.	0.6	98
3	Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. Journal of Hazardous Materials, 2019, 371, 389-396.	6.5	90
4	Synthesis of copper-tin nanoparticles from old computer printed circuit boards. Journal of Cleaner Production, 2017, 142, 2586-2592.	4.6	65
5	Two-step pre-processing enrichment of waste printed circuit boards: Mechanical milling and physical separation. Journal of Cleaner Production, 2018, 184, 1113-1124.	4.6	64
6	Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale. Scientific Reports, 2016, 6, 34958.	1.6	60
7	From waste glass to building materials – An innovative sustainable solution for waste glass. Journal of Cleaner Production, 2018, 191, 192-206.	4.6	59
8	Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 2019, 143, 1-14.	5. 3	46
9	Effect of small addition of Cr on stability of retained austenite in high carbon steel. Materials Characterization, 2017, 125, 114-122.	1.9	41
10	Thermal Transformation of Waste Toner Powder into a Value-Added Ferrous Resource. ACS Sustainable Chemistry and Engineering, 2017, 5, 11543-11550.	3.2	39
11	Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Management, 2016, 50, 173-183.	3.7	34
12	Direct transformation of waste printed circuit boards to nano-structured powders through mechanical alloying. Materials and Design, 2018, 141, 26-36.	3.3	33
13	Effect of different waste filler and silane coupling agent on the mechanical properties of powder-resin composite. Journal of Cleaner Production, 2019, 224, 940-956.	4.6	29
14	Hybrid structure of white layer in high carbon steel – Formation mechanism and its properties. Scientific Reports, 2017, 7, 13288.	1.6	28
15	Simulation of Steel Refining Process in Converter. Steel Research International, 2010, 81, 617-622.	1.0	27
16	Enhancing Corrosion Resistance and Hardness Properties of Carbon Steel through Modification of Microstructure. Materials, 2018, 11, 2404.	1.3	27
17	Stability of retained austenite in high carbon steel – Effect of post-tempering heat treatment. Materials Characterization, 2019, 149, 239-247.	1.9	27
18	The effect of microstructure, filler load and surface adhesion of marine bio-fillers, in the performance of Hybrid Wood-Polypropylene Particulate Bio-composite. Journal of Cleaner Production, 2017, 154, 284-294.	4.6	26

#	Article	IF	CITATIONS
19	Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy. Journal of Environmental Management, 2017, 199, 7-12.	3.8	23
20	Current trends in direct transformation of waste printed circuit boards (WPCBs) into value-added materials and products. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 14-20.	3.2	22
21	From automotive shredder residue to nano-ceramics and graphitic carbon—Thermal degradation kinetics. Journal of Analytical and Applied Pyrolysis, 2016, 120, 60-74.	2.6	19
22	Thermal and mechanical stability of retained austenite in high carbon steel: An in - situ investigation. Materials Letters, 2016, 163, 209-213.	1.3	19
23	Recovery of heavy metals from waste printed circuit boards: statistical optimization of leaching and residue characterization. Environmental Science and Pollution Research, 2019, 26, 24417-24429.	2.7	19
24	Behavior of Vanadium and Niobium during Hot Metal Dephosphorization by CaO–SiO ₂ –Fe _t O Slag. ISIJ International, 2011, 51, 1624-1630.	0.6	17
25	Synthesis of calcium silicate from selective thermal transformation of waste glass and waste shell. Journal of Cleaner Production, 2018, 172, 3019-3027.	4.6	17
26	Valorisation of discarded nonwoven polypropylene as potential matrix-phase for thermoplastic-lignocellulose hybrid material engineered for building applications. Journal of Cleaner Production, 2020, 258, 120730.	4.6	17
27	In situ characterisation of MnS precipitation in high carbon steel. Scientific Reports, 2019, 9, 10096.	1.6	16
28	Effect of austenitisation temperature on corrosion resistance properties of dual-phase high-carbon steel. Journal of Materials Science, 2019, 54, 13775-13786.	1.7	15
29	Effects of austenizing temperature, cooling rate and isothermal temperature on overall phase transformation characteristics in high carbon steel. Journal of Materials Research and Technology, 2020, 9, 15286-15297.	2.6	15
30	Development of semi-solid ductile cast iron. International Journal of Cast Metals Research, 2004, 17, 157-161.	0.5	14
31	Process Simulation of Dephosphorization Treatment of Hot Metal with High Phosphorus Content. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 500-508.	0.1	14
32	Transforming automotive waste into TiN and TiC ceramics. Materials Letters, 2016, 176, 17-20.	1.3	14
33	The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel. Metals, 2018, 8, 199.	1.0	14
34	Cost-effective and sustainable approach to transform end-of-life vinyl banner to value added product. Resources, Conservation and Recycling, 2018, 136, 9-21.	5.3	13
35	Direct transformation of waste printed circuit boards into high surface area t-SnO2 for photocatalytic dye degradation. Journal of Environmental Chemical Engineering, 2019, 7, 103133.	3.3	13
36	Behaviour of Sulphide and Non-alumina-Based Oxide Inclusions in Ca-Treated High-Carbon Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1384-1394.	1.0	13

#	Article	IF	CITATIONS
37	Development of Simulation Model for Hot Metal Dephosphorization Process. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 491-499.	0.1	12
38	Effect of glass aggregates and coupling agent on the mechanical behaviour of polymeric glass composite. Journal of Cleaner Production, 2019, 227, 119-129.	4.6	12
39	Revealing the mechanism of extraordinary hardness without compensating the toughness in a low alloyed high carbon steel. Scientific Reports, 2020, 10, 181.	1.6	12
40	Green Manufacturing: A Key to Innovation Economy. Journal of Sustainable Metallurgy, 2016, 2, 273-275.	1.1	11
41	Waste glass powder – Innovative value-adding resource for hybrid wood-based products. Journal of Cleaner Production, 2018, 195, 215-225.	4.6	11
42	Mechanical particle size reduction methods as potential interfacial optimization alternative for a low-carbon particulate reinforced marine bio-composite. Journal of Cleaner Production, 2019, 221, 509-525.	4.6	11
43	Thermal Isolation of a Clean Alloy from Waste Slag and Polymeric Residue of Electronic Waste. Processes, 2020, 8, 53.	1.3	11
44	Corrosion Behaviour of Dual-Phase High Carbon Steel—Microstructure Influence. Journal of Manufacturing and Materials Processing, 2017, 1, 21.	1.0	10
45	Strain-rate-dependent deformation behaviour of high-carbon steel in compression: mechanical and structural characterisation. Journal of Materials Science, 2019, 54, 6594-6607.	1.7	10
46	Direct transformation of waste children's toys to high quality products using 3D printing: A waste-to-wealth and sustainable approach. Journal of Cleaner Production, 2020, 267, 122188.	4.6	10
47	Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste. Journal of Environmental Management, 2017, 188, 32-42.	3.8	9
48	Surface modification of high carbon steel through microstructural engineering. Materials Characterization, 2019, 148, 116-122.	1.9	9
49	Melt quality evaluation of ductile iron by pattern recognition of thermal analysis cooling curves. Tsinghua Science and Technology, 2008, 13, 142-146.	4.1	8
50	Effect of hydrothermal hot-compression method on the antimicrobial performance of green building materials from heterogeneous cellulose wastes. Journal of Cleaner Production, 2021, 280, 124377.	4.6	8
51	Valence Electron Ratio for Design of Shape Memory Alloys with Desired Phase Transformation Temperatures. Shape Memory and Superelasticity, 2021, 7, 179-189.	1.1	8
52	Thermocatalytic Conversion of Automotive Shredder Waste and Formation of Nanocarbons as a Process Byproduct. ACS Sustainable Chemistry and Engineering, 2017, 5, 5440-5448.	3.2	7
53	Evolution of Microstructure and Hardness of High Carbon Steel under Different Compressive Strain Rates. Metals, 2018, 8, 580.	1.0	7
54	Development of Cup-Cast Method; Semi-Solid Slurry Preparation without External Stirring Force. Solid State Phenomena, 2006, 116-117, 358-361.	0.3	6

#	Article	IF	Citations
55	Agglomeration Behavior of Non-Metallic Particles on the Surface of Ca-Treated High-Carbon Liquid Steel: An In Situ Investigation. Metals, 2018, 8, 176.	1.0	6
56	Stress-Induced Phase Transformation and Its Correlation with Corrosion Properties of Dual-Phase High Carbon Steel. Journal of Manufacturing and Materials Processing, 2019, 3, 55.	1.0	6
57	Effect of selective-precipitations process on the corrosion resistance and hardness of dual-phase high-carbon steel. Scientific Reports, 2019, 9, 15631.	1.6	6
58	On the damage mechanisms during compressive dwell-fatigue of \hat{l}^2 -annealed Ti-6242S alloy. International Journal of Fatigue, 2021, 146, 106158.	2.8	6
59	Effect of slope plate variable and reheating on the semi-solid structure of ductile cast iron. Tsinghua Science and Technology, 2008, 13, 147-151.	4.1	5
60	Enhancing steel properties through in situ formation of ultrahard ceramic surface. Scientific Reports, 2016, 6, 38740.	1.6	5
61	Strain-Rate-Dependent Deformation Behavior of High-Carbon Steel under Tensile–Compressive Loading. Jom, 2019, 71, 2757-2769.	0.9	5
62	A novel reforming approach of utilizing spent coffee grounds to produce iron. Resources, Conservation and Recycling, 2020, 163, 105067.	5.3	5
63	Dual functionality of mixed Cu-based two-dimensional (2D) heterostructures derived from electronic waste. Green Chemistry, 2021, 23, 5511-5523.	4.6	5
64	Effect of silicon and partitioning temperature on the microstructure and mechanical properties of high-carbon steel in a quenching and partitioning heat treatment. Journal of Materials Science, 2021, 56, 15423-15440.	1.7	5
65	Synthesis and characterization of biomorphic 1D-SiC nanoceramics from novel macroalga precursor material. Journal of Cleaner Production, 2021, 312, 127808.	4.6	5
66	Direct Transformation of Metallized Paper into Al-Si Nano-Rod and Al Nano-Particles Using Thermal Micronizing Technique. Materials, 2018, 11, 1964.	1.3	4
67	Innovative Surface Engineering of High-Carbon Steel through Formation of Ceramic Surface and Diffused Subsurface Hybrid Layering. ACS Sustainable Chemistry and Engineering, 2019, 7, 9228-9236.	3.2	4
68	Wastes as resources in steelmaking industry $\hat{a} \in \text{``}$ current trends. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100377.	3.2	4
69	Martensite and reverse transformation temperatures of TiAu-based and Tilr-based intermetallics. Journal of Alloys and Compounds, 2021, 870, 159399.	2.8	4
70	Quick Semi-Solid Slurry Making Method Using Metallic Cup. Solid State Phenomena, 2008, 141-143, 463-468.	0.3	3
71	Surface Modification of Steel Using Automotive Waste as Raw Materials. Procedia Manufacturing, 2017, 7, 387-394.	1.9	3
72	Engulfment Behavior of Inclusions in High-Carbon Steel: Theoretical and Experimental Investigation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2986-2997.	1.0	3

#	Article	IF	CITATIONS
73	Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources. Metals, 2018, 8, 78.	1.0	3
74	Multifunctional marine bio-additive with synergistic effect for non-toxic flame-retardancy and anti-microbial performance. Sustainable Materials and Technologies, 2020, 25, e00199.	1.7	3
75	Utilization of Waste Materials for the Manufacturing of Better-Quality Wear and Corrosion-Resistant Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2404-2410.	1.1	3
76	Effect of cyclic reprocessing on nylon 12 under injection molding: working towardÂmore efficient recycling of plastic waste. Materials Today Sustainability, 2021, 11-12, 100056.	1.9	3
77	Synthesis of Value-Added Ferrous Material from Electric Arc Furnace (EAF) Slag and Spent Coffee Grounds. Jom, 2021, 73, 1878-1888.	0.9	3
78	Simulation of Marine Bio-Composite Using Empirical Data Combined with Finite Element Technique. Journal of Composites Science, 2018, 2, 48.	1.4	2
79	Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input. Metals, 2019, 9, 902.	1.0	2
80	From Waste to Multi-Hybrid Layering of High Carbon Steel to Improve Corrosion Resistance: An In-Depth Analysis Using EPMA and AFM Techniques. Surfaces, 2019, 2, 485-496.	1.0	2
81	Effect of Microstructural Features on Magnetic Properties of High-Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5107-5122.	1.1	2
82	Semi-Solid Slurry Preparation without Additional Stirring, Cup-Cast Method. Materials Science Forum, 2006, 519-521, 1835-1840.	0.3	1
83	Theoretical Considerations for Thermal Control over Solid Fraction of Aluminum Alloy Slurry Prepared by Cup-Cast Method. Materials Transactions, 2007, 48, 2297-2303.	0.4	1
84	From waste to surface modification of aluminum bronze using selective surface diffusion process. Scientific Reports, 2019, 9, 1559.	1.6	1
85	Solid State Phase Transformation Mechanism in High Carbon Steel Under Compressive Load and with Varying Cr Percent. Minerals, Metals and Materials Series, 2018, , 797-802.	0.3	1
86	Quick Semi-Solid Slurry Making Method Using Metallic Cup. Solid State Phenomena, 0, , 463-468.	0.3	1
87	Materials in Metal Forming. , 2013, , 1-42.		1
88	Materials in Metal Forming. , 2015, , 231-284.		1
89	Analytical Model for Heat Transfer Phenomena in Cup-Cast Method. Solid State Phenomena, 2006, 116-117, 569-572.	0.3	0
90	Chapter 15 Green Manufacturing: From Waste to Value Added Materials., 2018,, 261-279.		0

#	Article	IF	CITATIONS
91	Thermal Transformation of End-of-Life Latex to Valuable Materials. Journal of Composites Science, 2020, 4, 166.	1.4	0
92	Comparison on corrosion performance of waste-based multi-hybrid structure high carbon steel and high Cr cast steel. SN Applied Sciences, 2020, 2, 1.	1.5	0
93	Characterization of Waste-Integrated Multi-hybrid Structure for Enhancing Corrosion Resistance of High-Carbon Steel. Journal of Sustainable Metallurgy, 2021, 7, 166-177.	1.1	0
94	Investigation of heat transfer in the cup-cast method by experiment, and analytical method. WIT Transactions on Engineering Sciences, 2006, , .	0.0	0