
Jean-Philippe Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family. Cell, 2012, 149, 214-231.	13.5	1,368
2	The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature Methods, 2013, 10, 730-736.	9.0	1,353
3	Largeâ€scale mapping of human protein–protein interactions by mass spectrometry. Molecular Systems Biology, 2007, 3, 89.	3.2	850
4	Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nature Methods, 2013, 10, 1239-1245.	9.0	277
5	A proximity-dependent biotinylation map of a human cell. Nature, 2021, 595, 120-124.	13.7	263
6	Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. Journal of Proteomics, 2015, 118, 81-94.	1.2	234
7	The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular Cell, 2016, 62, 409-421.	4.5	198
8	The Tale of Two Domains. Molecular and Cellular Proteomics, 2008, 7, 560-572.	2.5	168
9	(<i>R</i>)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12853-12858.	3.3	158
10	Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Molecular Cell, 2019, 73, 621-638.e17.	4.5	135
11	Stir bar sorptive extraction based on restricted access material for the direct extraction of caffeine and metabolites in biological fluids. Journal of Chromatography A, 2005, 1075, 43-49.	1.8	119
12	MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nature Methods, 2015, 12, 1106-1108.	9.0	113
13	Proteomics:  from Gel Based to Gel Free. Analytical Chemistry, 2005, 77, 3771-3788.	3.2	104
14	Functional Dissection of the NuA4 Histone Acetyltransferase Reveals Its Role as a Genetic Hub and that Eaf1 Is Essential for Complex Integrity. Molecular and Cellular Biology, 2008, 28, 2244-2256.	1.1	101
15	<scp>BRPF</scp> 3― <scp>HBO</scp> 1 regulates replication origin activation and histone H3K14 acetylation. EMBO Journal, 2016, 35, 176-192.	3.5	97
16	A Novel Proteomics Approach for the Discovery of Chromatin-associated Protein Networks. Molecular and Cellular Proteomics, 2009, 8, 870-882.	2.5	95
17	Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Science Advances, 2016, 2, e1600760.	4.7	90
18	Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression. Molecular Cell, 2009, 35, 340-351.	4.5	88

JEAN-PHILIPPE LAMBERT

#	Article	IF	CITATIONS
19	Multivalent Histone and DNA Engagement by a PHD/BRD/PWWP Triple Reader Cassette Recruits ZMYND8 to K14ac-Rich Chromatin. Cell Reports, 2016, 17, 2724-2737.	2.9	86
20	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	3.9	79
21	Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics, 2007, 7, 868-874.	1.3	76
22	Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics and Chromatin, 2014, 7, 14.	1.8	69
23	Data Independent Acquisition analysis in ProHits 4.0. Journal of Proteomics, 2016, 149, 64-68.	1.2	66
24	Exploring the Yeast Acetylome Using Functional Genomics. Cell, 2012, 149, 936-948.	13.5	63
25	Defining the budding yeast chromatinâ€associated interactome. Molecular Systems Biology, 2010, 6, 448.	3.2	58
26	Proteomics in 2005/2006:Â Developments, Applications and Challenges. Analytical Chemistry, 2007, 79, 4325-4344.	3.2	57
27	Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Research, 2017, 45, 805-817.	6.5	49
28	SAINTq: Scoring proteinâ€protein interactions in affinity purification – mass spectrometry experiments with fragment or peptide intensity data. Proteomics, 2016, 16, 2238-2245.	1.3	45
29	Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. ACS Chemical Biology, 2017, 12, 2619-2630.	1.6	41
30	Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein. Genes and Development, 2011, 25, 2489-2501.	2.7	40
31	mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1641-50.	3.3	38
32	Acetylation of PCNA Sliding Surface by Eco1 Promotes Genome Stability through Homologous Recombination. Molecular Cell, 2017, 65, 78-90.	4.5	38
33	Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Molecular Cell, 2020, 79, 472-487.e10.	4.5	38
34	BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes and Development, 2019, 33, 310-332.	2.7	35
35	Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nature Communications, 2021, 12, 1597.	5.8	35
36	Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein–Protein Interactions. Analytical Chemistry, 2011, 83, 4095-4102.	3.2	34

JEAN-PHILIPPE LAMBERT

#	Article	IF	CITATIONS
37	Regulation of Septin Dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4. PLoS ONE, 2011, 6, e25336.	1.1	33
38	Ydj1 governs fungal morphogenesis and stress response, and facilitates mitochondrial protein import via Mas1 and Mas2. Microbial Cell, 2017, 4, 342-361.	1.4	33
39	Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14124-14129.	3.3	32
40	Incorporating DNA shearing in standard affinity purification allows simultaneous identification of both soluble and chromatin-bound interaction partners. Journal of Proteomics, 2014, 100, 55-59.	1.2	28
41	Machine learning analysis identifies genes differentiating triple negative breast cancers. Scientific Reports, 2020, 10, 10464.	1.6	25
42	Conserved Asf1–importin β physical interaction in growth and sexual development in the ciliate Tetrahymena thermophila. Journal of Proteomics, 2013, 94, 311-326.	1.2	20
43	Using ProHits to Store, Annotate, and Analyze Affinity Purification–Mass Spectrometry (APâ€MS) Data. Current Protocols in Bioinformatics, 2012, 39, Unit8.16.	25.8	19
44	AIRE is a critical spindle-associated protein in embryonic stem cells. ELife, 2017, 6, .	2.8	19
45	Analysis of protein interaction networks using mass spectrometry compatible techniques. Analytica Chimica Acta, 2006, 564, 10-18.	2.6	17
46	Analysis of low-abundance proteins using the proteomic reactor with pH fractionation. Talanta, 2010, 80, 1526-1531.	2.9	16
47	Mapping physical interactions within chromatin by proteomic approaches. Proteomics, 2012, 12, 1609-1622.	1.3	16
48	The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics and Chromatin, 2018, 11, 10.	1.8	16
49	Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20599-20604.	3.3	15
50	Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in <i>Tetrahymena thermophila</i> . Nucleic Acids Research, 2021, 49, 6196-6212.	6.5	14
51	Myosin Phosphatase Modulates the Cardiac Cell Fate by Regulating the Subcellular Localization of Nkx2.5 in a Wnt/Rho–Associated Protein Kinase–Dependent Pathway. Circulation Research, 2013, 112, 257-266.	2.0	13
52	The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Current Biology, 2019, 29, 2371-2379.e6.	1.8	13
53	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. PLoS Genetics, 2020, 16, e1008511.	1.5	13
54	Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor. PLoS Genetics, 2011, 7, e1001299.	1.5	12

#	Article	IF	CITATIONS
55	Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Molecular Biology and Evolution, 2019, 36, 1037-1055.	3.5	12
56	Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes, 2019, 10, 333.	1.0	11
57	New ammunition for the proteomic reactor: strong anion exchange beads and multiple enzymes enhance protein identification and sequence coverage. Analytical and Bioanalytical Chemistry, 2010, 397, 3421-3430.	1.9	10
58	Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Scientific Reports, 2020, 10, 168.	1.6	10
59	Targeted proteomics analyses of phosphorylation-dependent signalling networks. Journal of Proteomics, 2018, 189, 39-47.	1.2	9
60	Design and synthesis of dansyl-labeled inhibitors of steroid sulfatase for optical imaging. Bioorganic and Medicinal Chemistry, 2020, 28, 115368.	1.4	9
61	Tyrosine phosphorylation of DEPTOR functions as a molecular switch to activate mTOR signaling. Journal of Biological Chemistry, 2021, 297, 101291.	1.6	8
62	MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Molecular and Cellular Proteomics, 2022, 21, 100253.	2.5	8
63	Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes and Development, 2022, 36, 664-683.	2.7	8
64	EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Reports, 2022, 40, 111031.	2.9	8
65	Emerging tools to investigate bromodomain functions. Methods, 2020, 184, 40-52.	1.9	7
66	TBX2 controls a proproliferative gene expression program in melanoma. Genes and Development, 2021, 35, 1657-1677.	2.7	7
67	New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair, 2022, 113, 103315.	1.3	5
68	Of proteins and DNA—proteomic role in the field of chromatin research. Molecular BioSystems, 2010, 6, 30-37.	2.9	4
69	IRX3/5 regulate mitotic chromatid segregation and limb bud shape. Development (Cambridge), 2020, 147,	1.2	4
70	Proteomics contribution to the elucidation of the steroid hormone receptors functions. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105387.	1.2	3
71	Functional proteomics protocol for the identification of interaction partners in Tetrahymena thermophila. STAR Protocols, 2021, 2, 100362.	0.5	3
72	Measurement and Analysis of Lysine Acetylation by KAT Complexes In Vitro and InÂVivo. Methods in Molecular Biology, 2019, 1983, 57-77.	0.4	2

JEAN-PHILIPPE LAMBERT

#	Article	IF	CITATIONS
73	A Nutrient-Based Cellular Model to Characterize Acetylation-Dependent Protein-Protein Interactions. Frontiers in Molecular Biosciences, 2022, 9, 831758.	1.6	2
74	Comprehensive Interactome Mapping of Nuclear Receptors Using Proximity Biotinylation. Methods in Molecular Biology, 2022, , 223-240.	0.4	2
75	DEPTOR Tyrosine Phosphorylation: A Novel Molecular Switch Involved in mTOR Activity. FASEB Journal, 2021, 35, .	0.2	0
76	Abstract IA19: Regulation of signaling interactomes in cancer. , 2015, , .		0
77	Editorial: The Evolving Chromatin and Transcriptional Landscapes—Emerging Methods, Tools and Techniques. Frontiers in Cell and Developmental Biology, 2021, 9, 782776.	1.8	0
78	EPH Receptor Tyrosine Kinases Regulate Epithelial Morphogenesis and Phosphorylate the PAR-3 Scaffold Protein to Modulate Downstream Signaling Networks. SSRN Electronic Journal, 0, , .	0.4	0
79	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		0
80	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		0
81	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		Ο
82	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		0
83	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		0
84	JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. , 2020, 16, e1008511.		0