Yuping Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793706/publications.pdf Version: 2024-02-01

YUDING WU

#	Article	IF	CITATIONS
1	Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018, 10, 246-267.	9.5	1,939
2	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
3	Carbon anode materials for lithium ion batteries. Journal of Power Sources, 2003, 114, 228-236.	4.0	696
4	Electrochemical Performance of MnO ₂ Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. Journal of Physical Chemistry C, 2009, 113, 14020-14027.	1.5	631
5	Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 51, 3872-3883.	2.6	553
6	Core–Shell Structure of Polypyrrole Grown on V ₂ O ₅ Nanoribbon as High Performance Anode Material for Supercapacitors. Advanced Energy Materials, 2012, 2, 950-955.	10.2	469
7	Electrode materials for aqueous asymmetric supercapacitors. RSC Advances, 2013, 3, 13059.	1.7	469
8	An Aqueous Rechargeable Zn//Co ₃ O ₄ Battery with High Energy Density and Good Cycling Behavior. Advanced Materials, 2016, 28, 4904-4911.	11.1	417
9	Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications, 2006, 8, 1553-1557.	2.3	416
10	Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences, 2006, 8, 113-128.	1.5	379
11	Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy and Environmental Science, 2013, 6, 2093.	15.6	348
12	A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. Journal of Power Sources, 2009, 194, 1222-1225.	4.0	346
13	Highâ€Performance Electrocatalytic Conversion of N ₂ to NH ₃ Using Oxygenâ€Vacancyâ€Rich TiO ₂ In Situ Grown on Ti ₃ C ₂ T <i>_x</i> MXene. Advanced Energy Materials, 2019, 9, 1803406	10.2	346
14	Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy and Environmental Science, 2011, 4, 3985.	15.6	333
15	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	8.2	331
16	LiMn ₂ O ₄ Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries. Nano Letters, 2013, 13, 2036-2040.	4.5	329
17	Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy and Environmental Science, 2013, 6, 618-624.	15.6	326
18	Hollow Structured Li ₃ VO ₄ Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4715-4720.	4.5	303

#	Article	IF	CITATIONS
19	A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochemistry Communications, 2007, 9, 1228-1232.	2.3	302
20	Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chemical Communications, 2011, 47, 10058.	2.2	298
21	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	8.2	279
22	V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochemistry Communications, 2009, 11, 1325-1328.	2.3	275
23	Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. Journal of Power Sources, 2006, 159, 717-720.	4.0	257
24	α-MoO ₃ Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 21868-21872.	1.5	248
25	A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300647.	10.2	243
26	Nanostructured positive electrode materials for post-lithium ion batteries. Energy and Environmental Science, 2016, 9, 3570-3611.	15.6	241
27	An aqueous rechargeable battery based on zinc anode and Na _{0.95} MnO ₂ . Chemical Communications, 2014, 50, 1209-1211.	2.2	239
28	Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. Journal of Power Sources, 2007, 174, 1109-1112.	4.0	237
29	Mo ₂ C/CNT: An Efficient Catalyst for Rechargeable Li–CO ₂ Batteries. Advanced Functional Materials, 2017, 27, 1700564.	7.8	236
30	An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zincâ€Based Batteries. Advanced Science, 2021, 8, e2100309.	5.6	232
31	An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy and Environmental Science, 2012, 5, 6909.	15.6	228
32	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	9.5	225
33	Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochemistry Communications, 2008, 10, 1652-1655.	2.3	224
34	Electrode materials for lithium secondary batteries prepared by sol–gel methods. Progress in Materials Science, 2005, 50, 881-928.	16.0	221
35	Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials, 2019, 11, .	3.8	215
36	An Aqueous Rechargeable Lithium Battery with Good Cycling Performance. Angewandte Chemie - International Edition, 2007, 46, 295-297.	7.2	213

#	Article	IF	CITATIONS
37	Ambientâ€Stable Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie - International Edition, 2021, 60, 8689-8693.	7.2	212
38	Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. Journal of Materials Chemistry, 2012, 22, 16465.	6.7	206
39	Fabrication of a graphene–cuprous oxide composite. Journal of Solid State Chemistry, 2009, 182, 2486-2490.	1.4	201
40	A Large Scalable and Lowâ€Cost Sulfur/Nitrogen Dualâ€Doped Hard Carbon as the Negative Electrode Material for Highâ€Performance Potassiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1901379.	10.2	195
41	A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochimica Acta, 2013, 87, 113-118.	2.6	194
42	Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries. Electrochimica Acta, 2002, 47, 3491-3507.	2.6	192
43	An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode. Scientific Reports, 2013, 3, 1401.	1.6	190
44	A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O. Journal of Power Sources, 2010, 195, 2789-2794.	4.0	185
45	Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. Journal of Materials Chemistry A, 2013, 1, 13582.	5.2	185
46	Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents. Bioresource Technology, 2014, 160, 142-149.	4.8	181
47	A Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor with High Energy Density. Advanced Materials, 2015, 27, 6962-6968.	11.1	177
48	Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano-Micro Letters, 2019, 11, 62.	14.4	176
49	In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal–Organic Framework (Ni–MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. ACS Applied Materials & Interfaces, 2016, 8, 28904-28916.	4.0	175
50	Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics, 2018, 318, 2-18.	1.3	169
51	Mechanism of lithium storage in low temperature carbon. Carbon, 1999, 37, 1901-1908.	5.4	168
52	Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. Journal of Power Sources, 2014, 248, 721-728.	4.0	167
53	A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7790.	5.2	166
54	Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochemistry Communications, 2007, 9, 886-890.	2.3	164

Yuping Wu

#	Article	IF	CITATIONS
55	A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. Journal of Membrane Science, 2015, 476, 112-118.	4.1	164
56	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	5.2	164
57	Tremella-like molybdenum dioxide consisting of nanosheets as an anode material for lithium ion battery. Electrochemistry Communications, 2008, 10, 118-122.	2.3	163
58	Co ₃ O ₄ @MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 2280-2285.	4.0	162
59	Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Advances, 2016, 6, 3671-3679.	1.7	161
60	Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs. ACS Photonics, 2016, 3, 215-222.	3.2	159
61	Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. Journal of Power Sources, 2015, 288, 368-375.	4.0	156
62	A sodium ion conducting gel polymer electrolyte. Solid State Ionics, 2015, 269, 1-7.	1.3	153
63	N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41, 674-680.	8.2	153
64	Rational Design of Hydroxylâ€Rich Ti ₃ C ₂ T _x MXene Quantum Dots for Highâ€Performance Electrochemical N ₂ Reduction. Advanced Energy Materials, 2020, 10, 2000797.	10.2	153
65	Microbial communities of aerobic granules: Granulation mechanisms. Bioresource Technology, 2014, 169, 344-351.	4.8	150
66	Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catalysis, 2015, 5, 1530-1538.	5.5	150
67	Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 13148.	6.7	146
68	Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 831-840.	1.5	146
69	Efficient and durable N ₂ reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chemical Communications, 2018, 54, 11332-11335.	2.2	144
70	Improving Electrochemical Stability and Low‶emperature Performance with Water/Acetonitrile Hybrid Electrolytes. Advanced Energy Materials, 2020, 10, 1902654.	10.2	144
71	Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. Journal of Membrane Science, 2011, 379, 80-85.	4.1	143
72	Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Longâ€Time ycling Durability. Advanced Materials, 2020, 32, e1905361.	11.1	143

#	Article	IF	CITATIONS
73	MoO2 synthesized by reduction of MoO3 with ethanol vapor as an anode material with good rate capability for the lithium ion battery. Journal of Power Sources, 2008, 179, 357-360.	4.0	142
74	Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochemistry Communications, 2010, 12, 1524-1526.	2.3	142
75	A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochemistry Communications, 2007, 9, 1700-1703.	2.3	141
76	Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. Journal of Materials Chemistry, 2010, 20, 2807.	6.7	141
77	A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. Journal of Materials Chemistry, 2012, 22, 20143.	6.7	141
78	A Zn–NiO rechargeable battery with long lifespan and high energy density. Journal of Materials Chemistry A, 2015, 3, 8280-8283.	5.2	141
79	A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. Electrochimica Acta, 2017, 245, 752-759.	2.6	135
80	Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochimica Acta, 2007, 53, 1055-1061.	2.6	134
81	Intrinsically conducting polymers in electrochemical energy technology: Trends and progress. Electrochimica Acta, 2014, 122, 93-107.	2.6	132
82	Synthesis and electrochemical performance of novel core/shell structured nanocomposites. Electrochemistry Communications, 2006, 8, 1-4.	2.3	130
83	Aqueous rechargeable lithium battery (ARLB) based on LiV3O8 and LiMn2O4 with good cycling performance. Electrochemistry Communications, 2007, 9, 1873-1876.	2.3	130
84	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	5.2	129
85	Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale, 2016, 8, 4748-4756.	2.8	127
86	Reclaiming graphite from spent lithium ion batteries ecologically and economically. Electrochimica Acta, 2019, 313, 423-431.	2.6	124
87	Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline–Acidic Electrolyte. Advanced Science, 2019, 6, 1801665.	5.6	124
88	Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochemistry Communications, 2010, 12, 418-421.	2.3	123
89	A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochimica Acta, 2014, 116, 512-517.	2.6	123
90	ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochimica Acta, 2016, 213, 260-269.	2.6	123

#	Article	IF	CITATIONS
91	Enhanced Microwave Absorption Properties by Tuning Cation Deficiency of Perovskite Oxides of Two-Dimensional LaFeO ₃ /C Composite in X-Band. ACS Applied Materials & Interfaces, 2017, 9, 7601-7610.	4.0	123
92	Nanoporous selenium as a cathode material for rechargeable lithium–selenium batteries. Chemical Communications, 2013, 49, 11515.	2.2	122
93	An activated carbon with high capacitance from carbonization of a resorcinol–formaldehyde resin. Electrochemistry Communications, 2009, 11, 715-718.	2.3	121
94	Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochemistry Communications, 2011, 13, 205-208.	2.3	121
95	A conductive polymer coated MoO ₃ anode enables an Al-ion capacitor with high performance. Journal of Materials Chemistry A, 2016, 4, 5115-5123.	5.2	120
96	Latest Advances in High-Voltage and High-Energy-Density Aqueous Rechargeable Batteries. Electrochemical Energy Reviews, 2021, 4, 1-34.	13.1	120
97	Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochemistry Communications, 2012, 23, 5-8.	2.3	119
98	Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries. Chemical Communications, 2013, 49, 9209.	2.2	119
99	A Quasiâ€Solidâ€State Liâ€Ion Capacitor Based on Porous TiO ₂ Hollow Microspheres Wrapped with Graphene Nanosheets. Small, 2016, 12, 6207-6213.	5.2	118
100	Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO ₂ . Chemistry of Materials, 2008, 20, 2612-2614.	3.2	117
101	A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. Journal of Power Sources, 2012, 197, 330-333.	4.0	117
102	Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?. Journal of Materials Chemistry A, 2019, 7, 14937-14970.	5.2	116
103	Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. Journal of Power Sources, 2014, 246, 19-23.	4.0	114
104	Green energy storage chemistries based on neutral aqueous electrolytes. Journal of Materials Chemistry A, 2014, 2, 10739-10755.	5.2	113
105	Effects of doped sulfur on electrochemical performance of carbon anode. Journal of Power Sources, 2002, 108, 245-249.	4.0	112
106	Bendable ITO-free Organic Solar Cells with Highly Conductive and Flexible PEDOT:PSS Electrodes on Plastic Substrates. ACS Applied Materials & amp; Interfaces, 2015, 7, 16287-16295.	4.0	112
107	Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. Journal of Power Sources, 2012, 198, 308-311.	4.0	111
108	Direct growth of porous crystalline NiCo ₂ O ₄ nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.	5.2	111

#	Article	IF	CITATIONS
109	Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. ACS Applied Materials & Interfaces, 2016, 8, 9022-9029.	4.0	111
110	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56, 426-433.	8.2	111
111	Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresource Technology, 2014, 156, 14-19.	4.8	109
112	An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 2019, 29, 1805978.	7.8	109
113	Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics, 1999, 120, 117-123.	1.3	108
114	An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Advances, 2014, 4, 76-81.	1.7	108
115	Preparation and characterization of three-dimensionally ordered mesoporous titania microparticles as anode material for lithium ion battery. Electrochemistry Communications, 2007, 9, 2140-2144.	2.3	107
116	Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. Journal of Membrane Science, 2008, 322, 416-422.	4.1	107
117	Research on a gel polymer electrolyte for Li-ion batteries. Pure and Applied Chemistry, 2008, 80, 2553-2563.	0.9	107
118	CNT@Fe ₃ O ₄ @C Coaxial Nanocables: Oneâ€Pot, Additiveâ€Free Synthesis and Remarkable Lithium Storage Behavior. Chemistry - A European Journal, 2013, 19, 9866-9874.	1.7	107
119	A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. Journal of Power Sources, 2014, 270, 53-58.	4.0	107
120	A safe and fast-charging lithium-ion battery anode using MXene supported Li ₃ VO ₄ . Journal of Materials Chemistry A, 2019, 7, 11250-11256.	5.2	106
121	Diethyl(thiophen-2-ylmethyl)phosphonate: a novel multifunctional electrolyte additive for high voltage batteries. Journal of Materials Chemistry A, 2018, 6, 10990-11004.	5.2	105
122	Boosting electrocatalytic N ₂ reduction to NH ₃ on β-FeOOH by fluorine doping. Chemical Communications, 2019, 55, 3987-3990.	2.2	104
123	Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochimica Acta, 2017, 232, 106-113.	2.6	103
124	Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2007, 17, 1321.	6.7	102
125	Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. Journal of Materials Chemistry A, 2016, 4, 12088-12097.	5.2	102
126	LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochemistry Communications, 2011, 13, 1159-1162.	2.3	100

#	Article	IF	CITATIONS
127	Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. Scientific Reports, 2013, 3, 3187.	1.6	100
128	Characteristics of an aqueous rechargeable lithium battery (ARLB). Electrochimica Acta, 2007, 52, 4911-4915.	2.6	99
129	Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters. Bioresource Technology, 2014, 160, 24-31.	4.8	99
130	Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 272-289.	4.1	98
131	Disintegration of aerobic granules: Role of second messenger cyclic di-GMP. Bioresource Technology, 2013, 146, 330-335.	4.8	97
132	Selfâ€Assembled 3D Foamâ€Like NiCo ₂ O ₄ as Efficient Catalyst for Lithium Oxygen Batteries. Small, 2016, 12, 602-611.	5.2	97
133	New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters, 2019, 4, 656-665.	8.8	97
134	A Stimulusâ€Responsive Zinc–Iodine Battery with Smart Overcharge Selfâ€Protection Function. Advanced Materials, 2020, 32, e2000287.	11.1	97
135	Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. Journal of Colloid and Interface Science, 2020, 567, 300-307.	5.0	93
136	Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries. Nano-Micro Letters, 2022, 14, 5.	14.4	93
137	Advances in rechargeable Mg batteries. Journal of Materials Chemistry A, 2020, 8, 25601-25625.	5.2	91
138	Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Nano Letters, 2015, 15, 6102-6109.	4.5	90
139	Spinel LiNixMn2â^'xO4 as cathode material for aqueous rechargeable lithium batteries. Electrochimica Acta, 2013, 93, 301-306.	2.6	89
140	Calcium precipitate induced aerobic granulation. Bioresource Technology, 2015, 176, 32-37.	4.8	89
141	Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochemistry Communications, 2000, 2, 272-275.	2.3	88
142	Surface fluorinated LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ as a positive electrode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15156-15162.	5.2	88
143	A quasi-solid-state Li-ion capacitor with high energy density based on Li ₃ VO ₄ /carbon nanofibers and electrochemically-exfoliated graphene sheets. Journal of Materials Chemistry A, 2017, 5, 14922-14929.	5.2	86
144	A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochimica Acta, 2017, 224, 405-411.	2.6	86

#	Article	IF	CITATIONS
145	Sulfur nanocomposite as a positive electrode material for rechargeable potassium–sulfur batteries. Chemical Communications, 2018, 54, 2288-2291.	2.2	86
146	An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chemical Communications, 2013, 49, 6179.	2.2	85
147	Considering Critical Factors of Silicon/Graphite Anode Materials for Practical High-Energy Lithium-Ion Battery Applications. Energy & Fuels, 2021, 35, 944-964.	2.5	85
148	Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochimica Acta, 2009, 54, 1199-1203.	2.6	84
149	Accelerated aerobic granulation using alternating feed loadings: Alginate-like exopolysaccharides. Bioresource Technology, 2014, 171, 360-366.	4.8	83
150	Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2022, 605, 320-329.	5.0	81
151	Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution. Electrochimica Acta, 2013, 96, 8-12.	2.6	80
152	A Copper Porphyrinâ€Based Conjugated Mesoporous Polymerâ€Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem, 2016, 9, 2365-2373.	3.6	80
153	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	2.5	80
154	Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horizons, 2019, 4, 991-998.	4.1	80
155	A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochemistry Communications, 2012, 22, 29-32.	2.3	79
156	Recent advances on biosorption by aerobic granular sludge. Journal of Hazardous Materials, 2018, 357, 253-270.	6.5	79
157	Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure and Applied Chemistry, 2006, 78, 1889-1896.	0.9	78
158	Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. Journal of Power Sources, 2007, 174, 1197-1200.	4.0	78
159	Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. Journal of Materials Chemistry A, 2013, 1, 14713.	5.2	78
160	Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. Journal of Power Sources, 2014, 253, 98-103.	4.0	77
161	Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy, 2014, 8, 297-304.	8.2	77
162	Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19444-19450.	5.2	76

#	Article	IF	CITATIONS
163	Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology, 2016, 97, 1680-1689.	1.5	76
164	Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag ₂ 0 and TiO ₂ using reduced graphene oxide as the electron mediator. Catalysis Science and Technology, 2017, 7, 4193-4205.	2.1	76
165	Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chemical Engineering Journal, 2021, 405, 127038.	6.6	76
166	Study on different power and cycling performance of crystalline KxMnO2·nH2O asÂcathode material for supercapacitors in Li2SO4, Na2SO4, and K2SO4 aqueous electrolytes. Journal of Power Sources, 2013, 223, 56-61.	4.0	75
167	Carbon anode materials based on melamine resin. Journal of Materials Chemistry, 1998, 8, 2223-2227.	6.7	74
168	A lotus root-like porous nanocomposite polymer electrolyte. Electrochemistry Communications, 2008, 10, 791-794.	2.3	74
169	In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical Communications, 2016, 52, 5546-5549.	2.2	74
170	Anode materials for lithium ion batteries by oxidative treatment of common natural graphite. Solid State Ionics, 2003, 156, 283-290.	1.3	73
171	Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. Journal of Power Sources, 2008, 180, 602-606.	4.0	72
172	Layered VSe ₂ : a promising host for fast zinc storage and its working mechanism. Journal of Materials Chemistry A, 2020, 8, 9313-9321.	5.2	72
173	Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor. Bioresource Technology, 2014, 152, 1-6.	4.8	71
174	Robust and highly active copper-based electrocatalyst for hydrogen production at low overpotential in neutral water. Chemical Communications, 2015, 51, 12954-12957.	2.2	71
175	Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy, 2020, 77, 105200.	8.2	71
176	Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method. Journal of Power Sources, 2000, 85, 294-298.	4.0	70
177	A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochemistry Communications, 2008, 10, 1883-1885.	2.3	70
178	Nano-Fe3C@PGC as a novel low-cost anode electrocatalyst for superior performance microbial fuel cells. Biosensors and Bioelectronics, 2019, 142, 111594.	5.3	70
179	A novel process to prepare porous membranes comprising SnO2 nanoparticles and P(MMA-AN) as polymer electrolyte. Electrochemistry Communications, 2008, 10, 1052-1055.	2.3	69
180	Polypyrrole-coated LiV3O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries. Journal of Power Sources, 2013, 224, 290-294.	4.0	69

#	Article	IF	CITATIONS
181	Electrochemical Reduction of CO ₂ Toward C ₂ Valuables on Cu@Ag Coreâ€&hell Tandem Catalyst with Tunable Shell Thickness. Small, 2021, 17, e2102293.	5.2	69
182	Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chemical Engineering Journal, 2017, 313, 187-196.	6.6	68
183	Advances of TiO ₂ as Negative Electrode Materials for Sodiumâ€lon Batteries. Advanced Materials Technologies, 2018, 3, 1800004.	3.0	68
184	An acetylene black modified gel polymer electrolyte for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13679-13686.	5.2	68
185	Materials prepared for lithium ion batteries by mechanochemical methods. Journal of Power Sources, 2004, 133, 229-242.	4.0	67
186	Noble Metal-Free Copper Hydroxide as an Active and Robust Electrocatalyst for Water Oxidation at Weakly Basic pH. ACS Sustainable Chemistry and Engineering, 2016, 4, 2593-2600.	3.2	66
187	Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 2483-2487.	5.2	66
188	Lithiophilic Ag/Li composite anodes <i>via</i> a spontaneous reaction for Li nucleation with a reduced barrier. Journal of Materials Chemistry A, 2019, 7, 20911-20918.	5.2	66
189	Gold nanorods/g-C3N4 heterostructures for plasmon-enhanced photocatalytic H2 evolution in visible and near-infrared light. Journal of Colloid and Interface Science, 2019, 557, 700-708.	5.0	66
190	Mechanism of enhanced Sb(V) removal from aqueous solution using chemically modified aerobic granules. Journal of Hazardous Materials, 2015, 284, 43-49.	6.5	65
191	Core–Shell Co ₂ VO ₄ /Carbon Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55020-55028.	4.0	65
192	Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery. Journal of Power Sources, 2007, 174, 770-773.	4.0	64
193	Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. Journal of Power Sources, 2009, 189, 503-506.	4.0	64
194	Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162621.	1.2	64
195	Dualâ€Graphene Rechargeable Sodium Battery. Small, 2017, 13, 1702449.	5.2	64
196	Understanding the role of extracellular polymeric substances in the rheological properties of aerobic granular sludge. Science of the Total Environment, 2020, 705, 135948.	3.9	64
197	In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. Journal of Power Sources, 2013, 244, 684-689.	4.0	63
198	A Highâ€Rate and Long‣ife Aqueous Rechargeable Ammonium Zinc Hybrid Battery. ChemSusChem, 2019, 12, 3732-3736.	3.6	62

#	Article	IF	CITATIONS
199	High-Rate and High-Voltage Aqueous Rechargeable Zinc Ammonium Hybrid Battery from Selective Cation Intercalation Cathode. ACS Applied Energy Materials, 2019, 2, 6984-6989.	2.5	61
200	Cavitation erosion characteristics at various flow velocities in NaCl medium of carbide-based cermet coatings prepared by HVOF spraying. Ceramics International, 2021, 47, 1929-1939.	2.3	61
201	Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery. Microporous and Mesoporous Materials, 2009, 117, 515-518.	2.2	60
202	Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries. Materials Research Bulletin, 2014, 57, 127-134.	2.7	60
203	Core–shell MnO ₂ @Fe ₂ O ₃ nanospindles as a positive electrode for aqueous supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22066-22072.	5.2	60
204	Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Research, 2016, 9, 165-173.	5.8	60
205	Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochimica Acta, 2017, 249, 113-121.	2.6	60
206	A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Advances, 2014, 4, 9086-9091.	1.7	59
207	Enhanced capacitive desalination of MnO ₂ by forming composite with multi-walled carbon nanotubes. RSC Advances, 2016, 6, 6730-6736.	1.7	59
208	Aqueous Rechargeable Battery Based on Zinc and a Composite of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ . ChemElectroChem, 2015, 2, 1024-1030.	1.7	58
209	Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. Journal of Power Sources, 2013, 242, 560-565.	4.0	57
210	High-Performance Ge Quantum Dot Decorated Graphene/Zinc-Oxide Heterostructure Infrared Photodetector. ACS Applied Materials & Interfaces, 2015, 7, 2452-2458.	4.0	57
211	Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. Journal of Power Sources, 2006, 159, 219-222.	4.0	56
212	Effects of Carbon Coatings on Nanocomposite Electrodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006, 9, A529.	2.2	56
213	The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity. Electrochimica Acta, 2008, 53, 5660-5664.	2.6	56
214	Electrochemical performance of carbon/Ni composite fibers from electrospinning as anode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 1368-1373.	5.2	56
215	Facile and scalable synthesis of a sulfur, selenium and nitrogen co-doped hard carbon anode for high performance Na- and K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 14993-15001.	5.2	56
216	Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries. Materials Letters, 2010, 64, 972-975.	1.3	55

#	Article	IF	CITATIONS
217	One-step coaxial electrodeposition of Co _{0.85} Se on CoNi ₂ S ₄ nanotube arrays for flexible solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15630-15639.	5.2	55
218	Exceeding three-electron reactions in Na _{3+2x} Mn _{1+x} Ti _{1â^'x} (PO ₄) ₃ NASICON cathodes with high energy density for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 10437-10446.	5.2	55
219	Li ₄ Ti ₅ O ₁₂ Coating on Copper Foil as Ion Redistributor Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	55
220	An Aqueous Electrochemical Energy Storage System Based on Doping and Intercalation: Ppy//LiMn ₂ O ₄ . ChemPhysChem, 2008, 9, 2299-2301.	1.0	54
221	Vinyl-Tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochemistry Communications, 2009, 11, 526-529.	2.3	54
222	Composite of CoOOH Nanoplates with Multiwalled Carbon Nanotubes as Superior Cathode Material for Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 7069-7075.	1.5	53
223	Orientated Co ₃ O ₄ Nanocrystals on MWCNTs as Superior Battery-Type Positive Electrode Material for a Hybrid Capacitor. Journal of the Electrochemical Society, 2015, 162, A1966-A1971.	1.3	52
224	A nanocomposite of Li 2 MnO 3 coated by FePO 4 as cathode material for lithium ion batteries. Journal of Power Sources, 2015, 287, 416-421.	4.0	52
225	Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Research, 2021, 14, 2574-2583.	5.8	52
226	Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/ <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:msub><mml:mrow><mml:mtext>VOmathvariant="normal">+</mml:mtext></mml:mrow></mml:msub><mml:math> couple for vanadium redox battery_lournal of Power Sources_2015_299_301-308</mml:math></mml:mrow></mml:msup></mml:mrow></mml:math>	ext≱₄ømml	:m 6 0w> <mm< td=""></mm<>
227	A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte. Journal of Materials Chemistry A, 2019, 7, 4110-4118.	5.2	51
228	Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries. Nature Catalysis, 2022, 5, 193-201.	16.1	51
229	Aqueous Rechargeable Batteries for Largeâ€scale Energy Storage. Israel Journal of Chemistry, 2015, 55, 521-536.	1.0	50
230	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
231	Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Materials, 2018, 10, 429-440.	3.8	50
232	Formation of bacterial aerobic granules: Role of propionate. Bioresource Technology, 2015, 197, 489-494.	4.8	49
233	Ambient electrochemical N ₂ -to-NH ₃ fixation enabled by Nb ₂ O ₅ nanowire array. Inorganic Chemistry Frontiers, 2019, 6, 423-427.	3.0	49
234	Lithium Bis(oxalate)borate Reinforces the Interphase on Li-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 20854-20863.	4.0	49

#	Article	IF	CITATIONS
235	Composite anode material for lithium ion battery with low sensitivity to water. Electrochemistry Communications, 2000, 2, 626-629.	2.3	48
236	Non-equilibrium Structural Evolution of the Lithium-Rich Li _{1+<i>y</i>} Mn ₂ O ₄ Cathode within a Battery. Chemistry of Materials, 2013, 25, 754-760.	3.2	48
237	Hybrid system for rechargeable magnesium battery with high energy density. Scientific Reports, 2015, 5, 11931.	1.6	48
238	Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. Journal of Power Sources, 2015, 275, 392-398.	4.0	48
239	A high voltage aqueous zinc–manganese battery using a hybrid alkaline-mild electrolyte. Chemical Communications, 2020, 56, 2039-2042.	2.2	48
240	Nitrogen-containing polymeric carbon as anode material for lithium ion secondary battery. Journal of Applied Polymer Science, 2000, 77, 1735-1741.	1.3	47
241	Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing. Applied Microbiology and Biotechnology, 2016, 100, 3747-3755.	1.7	47
242	Promoting Li–O ₂ Batteries With Redox Mediators. ChemSusChem, 2019, 12, 104-114.	3.6	47
243	Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos, 2020, 129, 457-465.	1.2	47
244	Thermal pyrolysis of Si@ZIF-67 into Si@N-doped CNTs towards highly stable lithium storage. Science Bulletin, 2020, 65, 452-459.	4.3	46
245	Carbon anodes for a lithium secondary battery based on polyacrylonitrile. Journal of Power Sources, 1998, 75, 201-206.	4.0	45
246	Effect of Cu2O coating on graphite as anode material of lithium ion battery in PC-based electrolyte. Journal of Power Sources, 2007, 171, 904-907.	4.0	45
247	Composites of porous Co ₃ O ₄ grown on Li ₂ MnO ₃ microspheres as cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4840-4845.	5.2	45
248	Oneâ€5tep Synthesis of Monodispersed Mesoporous Carbon Nanospheres for Highâ€Performance Flexible Quasiâ€5olidâ€5tate Microâ€5upercapacitors. Small, 2019, 15, e1903836.	5.2	45
249	Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries. Small, 2021, 17, e1903854.	5.2	45
250	Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells. , 2022, 4, 1-11.		45
251	A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. RSC Advances, 2015, 5, 52382-52387.	1.7	44
252	Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Materials, 2020, 24, 304-311.	9.5	44

#	Article	IF	CITATIONS
253	Methods to Improve Lithium Metal Anode for Li-S Batteries. Frontiers in Chemistry, 2019, 7, 827.	1.8	43
254	Metal-modified sludge-based biochar enhance catalytic capacity: Characteristics and mechanism. Journal of Environmental Management, 2021, 284, 112113.	3.8	43
255	Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and modified montmorillonite. Electrochemistry Communications, 2003, 5, 1025-1029.	2.3	42
256	Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. Electrochemistry Communications, 2006, 8, 1726-1730.	2.3	42
257	A foaming process to prepare porous polymer membrane for lithium ion batteries. Electrochimica Acta, 2009, 54, 4403-4407.	2.6	42
258	Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytologist, 2019, 221, 1574-1584.	3.5	42
259	Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Research, 2022, 15, 7209-7219.	5.8	42
260	Ion exchange membranes for vanadium redox flow batteries. Pure and Applied Chemistry, 2014, 86, 633-649.	0.9	41
261	Flexible quantum dot light emitting diodes based on ZnO nanoparticles. RSC Advances, 2015, 5, 82192-82198.	1.7	41
262	A high-capacity dual core–shell structured MWCNTs@S@PPy nanocomposite anode for advanced aqueous rechargeable lithium batteries. Nanoscale, 2017, 9, 11004-11011.	2.8	41
263	A sandwich-like Si/SiC/nanographite sheet as a high performance anode for lithium-ion batteries. Dalton Transactions, 2019, 48, 17683-17690.	1.6	41
264	Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors. Small, 2017, 13, 1702534.	5.2	40
265	Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries. Carbon, 2019, 148, 9-15.	5.4	40
266	A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density. Advanced Energy Materials, 2020, 10, 2001583.	10.2	40
267	Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceramics International, 2021, 47, 1829-1836.	2.3	40
268	Macroporous nanocomposite polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2008, 184, 562-565.	4.0	39
269	Cadmium Sulfide Nanorods Decorated with Copper Sulfide via One tep Cation Exchange Approach for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2016, 8, 157-162.	1.8	39
270	A Cr ₂ O ₃ /MWCNTs composite as a superior electrode material for supercapacitor. RSC Advances, 2017, 7, 25019-25024.	1.7	39

#	Article	IF	CITATIONS
271	Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors. Scientific Reports, 2019, 9, 5431.	1.6	39
272	A Facile, One-Step Synthesis of Silicon/Silicon Carbide/Carbon Nanotube Nanocomposite as a Cycling-Stable Anode for Lithium Ion Batteries. Nanomaterials, 2019, 9, 1624.	1.9	39
273	Integrating the Z-scheme heterojunction into a novel Ag2O@rGO@reduced TiO2 photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis. Journal of Colloid and Interface Science, 2019, 538, 689-698.	5.0	39
274	Li ₂ O ₂ Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li–O ₂ Batteries. Small Methods, 2022, 6, e2101280.	4.6	39
275	The Mechanism of the Oneâ€Step Synthesis of Hollowâ€Structured Li ₃ VO ₄ as an Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 5608-5612.	1.7	38
276	The dependence of phase change enthalpy on the pore structure and interfacial groups in hydrated salts/silica composites via sol–gel. Journal of Colloid and Interface Science, 2015, 448, 100-105.	5.0	38
277	Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. Journal of Alloys and Compounds, 2016, 688, 923-932.	2.8	38
278	Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Advances, 2016, 6, 109340-109345.	1.7	38
279	Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 9906-9910.	7.2	38
280	La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochimica Acta, 2019, 298, 106-111.	2.6	38
281	Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceramics International, 2019, 45, 4283-4289.	2.3	38
282	A multifunctional separator for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 334, 135486.	2.6	38
283	Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties. Journal of Environmental Management, 2020, 268, 110734.	3.8	38
284	Promoting electrocatalytic nitrogen reduction to ammonia <i>via</i> Fe-boosted nitrogen activation on MnO ₂ surfaces. Journal of Materials Chemistry A, 2020, 8, 13679-13684.	5.2	38
285	Synthesis of salicylic acid-modified graphite carbon nitride for enhancing photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2020, 571, 318-325.	5.0	38
286	Regulate Phosphorus Configuration in High P-Doped Hard Carbon as a Superanode for Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 12059-12068.	4.0	38
287	Electrocatalysis at Electrodes for VanadiumRedox Flow Batteries. Batteries, 2018, 4, 47.	2.1	37
288	Ambient electrocatalytic N ₂ reduction to NH ₃ by metal fluorides. Journal of Materials Chemistry A, 2019, 7, 17761-17765.	5.2	37

#	Article	IF	CITATIONS
289	Conducting IPN Based on Polyaniline and Crosslinked Cellulose. Polymer International, 1997, 42, 276-280.	1.6	36
290	A lithium ion battery using an aqueous electrolyte solution. Scientific Reports, 2016, 6, 28421.	1.6	36
291	A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Materials Research Bulletin, 2016, 74, 241-247.	2.7	36
292	The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy. Bioresource Technology, 2016, 201, 58-64.	4.8	36
293	Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2021, 458, 93-103.	1.8	36
294	A porous poly(vinylidene fluoride) gel electrolyte for lithium ion batteries prepared by using salicylic acid as a foaming agent. Journal of Power Sources, 2009, 189, 594-598.	4.0	35
295	Mixedâ€Ligand Nanoparticles as Supramolecular Receptors. Small, 2011, 7, 1961-1966.	5.2	35
296	Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 5368-5373.	2.8	35
297	Computational Design of Single Mo Atom Anchored Defective Boron Phosphide Monolayer as a Highâ€performance Electrocatalyst for the Nitrogen Reduction Reaction. Energy and Environmental Materials, 2021, 4, 255-262.	7.3	35
298	A green method for the preparation of anode materials for lithium ion batteries. Journal of Materials Chemistry, 2001, 11, 1233-1236.	6.7	34
299	Nanostructured anode materials for Li-ion batteries. Pure and Applied Chemistry, 2008, 80, 2283-2295.	0.9	34
300	Synergy of Sulfur/Polyacrylonitrile Composite and Gel Polymer Electrolyte Promises Heat-Resistant Lithium-Sulfur Batteries. IScience, 2019, 19, 316-325.	1.9	34
301	Co–Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4366-4372.	4.0	34
302	Hydrogen production via electrolysis of aqueous formic acid solutions. International Journal of Hydrogen Energy, 2011, 36, 9415-9419.	3.8	33
303	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	1.9	33
304	Advances of Aluminum Based Energy Storage Systems. Chinese Journal of Chemistry, 2017, 35, 13-20.	2.6	33
305	An Aqueous Hybrid Zincâ€Bromine Battery with High Voltage and Energy Density. ChemElectroChem, 2020, 7, 1531-1536	1.7	33
306	Diagnosing the SEI Layer in a Potassium Ion Battery Using Distribution of Relaxation Time. Journal of Physical Chemistry Letters, 2021, 12, 2064-2071.	2.1	33

#	Article	IF	CITATIONS
307	Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. , 2022, 1, 100011.		33
308	Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material. Electrochimica Acta, 2003, 48, 867-874.	2.6	32
309	Effects of 3,5-bis(trifluoromethyl)benzeneboronic acid as an additive on electrochemical performance of propylene carbonate-based electrolytes for lithium ion batteries. Electrochimica Acta, 2008, 54, 816-820.	2.6	32
310	Biosorption of antimony(V) onto Fe(III)-treated aerobic granules. Bioresource Technology, 2014, 158, 351-354.	4.8	32
311	Electrolytes for vanadium redox flow batteries. Pure and Applied Chemistry, 2014, 86, 661-669.	0.9	32
312	CoPt <i>_x</i> -loaded Zn _{0.5} Cd _{0.5} S nanocomposites for enhanced visible light photocatalytic H ₂ production. International Journal of Energy Research, 2016, 40, 1280-1286.	2.2	32
313	Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 8981-8988.	5.2	32
314	Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129, 1185-1195.	1.2	32
315	On the utilization of supercapacitor electrode materials. Electrochimica Acta, 2021, 366, 137390.	2.6	32
316	The allometry of plant height explains species loss under nitrogen addition. Ecology Letters, 2021, 24, 553-562.	3.0	32
317	Studies on capacity fading mechanism of graphite anode for Li-ion battery. Journal of Power Sources, 2006, 162, 663-666.	4.0	31
318	Disproportionation route to monodispersed copper nanoparticles for the catalytic synthesis of propargylamines. RSC Advances, 2013, 3, 19812.	1.7	31
319	Boron doping at P-site to improve electrochemical performance of LiMnPO4 as cathode for lithium ion battery. Journal of Power Sources, 2014, 255, 355-359.	4.0	31
320	Si/C Composites as Negative Electrode for High Energy Lithium Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 21-29.	2.6	31
321	Hollow Co9S8 from metal organic framework supported on rGO as electrode material for highly stable supercapacitors. Chinese Chemical Letters, 2018, 29, 612-615.	4.8	31
322	Inhibition of urease activity by humic acid extracted from sludge fermentation liquid. Bioresource Technology, 2019, 290, 121767.	4.8	31
323	A defective g-C ₃ N ₄ /RGO/TiO ₂ composite from hydrogen treatment for enhanced visible-light photocatalytic H ₂ production. Nanoscale, 2020, 12, 22030-22035.	2.8	31
324	Two low-dimensional Schiff base copper(<scp>i</scp> iii) complexes: synthesis, characterization and catalytic activity for degradation of organic dyes. CrystEngComm, 2014, 16, 7926.	1.3	30

#	Article	IF	CITATIONS
325	Porous graphite: A facile synthesis from ferrous gluconate and excellent performance as anode electrocatalyst of microbial fuel cell. Biosensors and Bioelectronics, 2018, 109, 116-122.	5.3	30
326	Mediumâ€Bandgap Conjugated Polymer Donors for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1900074.	2.0	30
327	Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Research, 2020, 13, 188-195.	5.8	30
328	Anode materials for lithium ion batteries from mild oxidation of natural graphite. Journal of Applied Electrochemistry, 2002, 32, 1011-1017.	1.5	29
329	Understanding of the mechanism of extracellular polymeric substances of aerobic granular sludge against tetracycline from the perspective of fluorescence properties. Science of the Total Environment, 2021, 756, 144054.	3.9	29
330	Nonporous Gel Electrolytes Enable Long Cycling at High Current Density for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 14258-14266.	4.0	29
331	Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge. Journal of Environmental Management, 2021, 299, 113602.	3.8	29
332	Hybrid fibers assembled from MoSe2/graphene heterostructures endow improved supercapacitive performance. Carbon, 2022, 187, 165-172.	5.4	29
333	Boosting Polysulfide Catalytic Conversion and Facilitating Li ⁺ Transportation by Ionâ€Selective COFs Composite Nanowire for LiS Batteries. Small, 2022, 18, e2106679.	5.2	29
334	Studies of the structure of vacuum deposited silicon films on metal substrates as anode materials for Li-ion batteries. Journal of Power Sources, 2006, 159, 349-352.	4.0	28
335	Preparation of porous polymer electrolyte by a microwave assisted effervescent disintegrable reaction. Electrochemistry Communications, 2009, 11, 161-164.	2.3	28
336	Effects of preparation conditions on porous polymer membranes by microwave assisted effervescent disintegrable reaction and their electrochemical properties. Journal of Membrane Science, 2010, 362, 113-118.	4.1	28
337	High-Performance Photo-Modulated Thin-Film Transistor Based on Quantum dots/Reduced Graphene Oxide Fragment-Decorated ZnO Nanowires. Nano-Micro Letters, 2016, 8, 247-253.	14.4	28
338	Electrochemical performance of 5ÂkW all-vanadium redox flow battery stack with a flow frame of multi-distribution channels. Journal of Solid State Electrochemistry, 2017, 21, 429-435.	1.2	28
339	SnS ₂ /Nâ€Doped Graphene as a Superior Stability Anode for Potassiumâ€Ion Batteries by Inhibiting "Shuttle Effectâ€I Batteries and Supercaps, 2020, 3, 56-59.	2.4	28
340	The optimization of microbial influenced corrosion resistance of HVOF sprayed nanostructured WC-10Co-4Cr coatings by ultrasound-assisted sealing. Ultrasonics Sonochemistry, 2021, 72, 105438.	3.8	28
341	Formation of noble-metal-free 2D/2D ZnmIn2Sm+3 (mÂ=Â1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution. Chemical Engineering Journal, 2021, 424, 130170.	6.6	28
342	Some Recent Research and Development in Drying Technologies: Product Perspective. Drying Technology, 2015, 33, 1339-1349.	1.7	27

#	Article	IF	CITATIONS
343	Titanium functionalized α-zirconium phosphate single layer nanosheets for photocatalyst applications. RSC Advances, 2015, 5, 93969-93978.	1.7	27
344	Theoretical Investigation into Suitable Pore Sizes of Membranes for Vanadium Redox Flow Batteries. ChemElectroChem, 2017, 4, 2184-2189.	1.7	27
345	In Pursuit of a Dendrite-Free Electrolyte/Electrode Interface on Lithium Metal Anodes: A Minireview. Energy & Fuels, 2020, 34, 10503-10512.	2.5	27
346	Functional CdS nanocomposites recovered from biomineralization treatment of sulfate wastewater and its applications in the perspective of photocatalysis and electrochemistry. Science of the Total Environment, 2020, 742, 140646.	3.9	27
347	In situ growth of vertically aligned ultrathin MoS2 on porous g-C3N4 for efficient photocatalytic hydrogen production. Applied Surface Science, 2021, 554, 149617.	3.1	27
348	Improving the electrochemical properties of carbon anodes in lithium secondary batteries. Journal of Power Sources, 1998, 70, 114-117.	4.0	26
349	Graphite@MoO3 composite as anode material for lithium ion battery in propylene carbonate-based electrolyte. Journal of Alloys and Compounds, 2010, 501, 218-220.	2.8	26
350	Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO ₂ toward Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 3061-3069.	4.0	26
351	Anaerobic co-digestion of food waste/excess sludge: substrates - products transformation and role of NADH as an indicator. Journal of Environmental Management, 2019, 232, 197-206.	3.8	26
352	Layered TiS ₂ as a Promising Host Material for Aqueous Rechargeable Zn Ion Battery. Energy & Fuels, 2020, 34, 11590-11596.	2.5	26
353	Improving Electrochemical Properties by Sodium Doping for Lithium-Rich Layered Oxides. ACS Applied Energy Materials, 2020, 3, 8953-8959.	2.5	26
354	Effect of WC-10Co on cavitation erosion behaviors of AlCoCrFeNi coatings prepared by HVOF spraying. Ceramics International, 2021, 47, 15121-15128.	2.3	26
355	Accelerating Pd Electrocatalysis for CO ₂ -to-Formate Conversion across a Wide Potential Window by Optimized Incorporation of Cu. ACS Applied Materials & Interfaces, 2022, 14, 8896-8905.	4.0	26
356	Improving electrochemical performance of graphitic carbon in PC-based electrolyte by nano-TiO2 coating. Electrochimica Acta, 2008, 53, 2376-2379.	2.6	25
357	The production of carbon nanospheres by the pyrolysis of polyacrylonitrile. Carbon, 2008, 46, 1816-1818.	5.4	25
358	Methyl phenyl bis-methoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries. Electrochimica Acta, 2011, 56, 4858-4864.	2.6	25
359	Nanowire K0.19MnO2 from hydrothermal method as cathode material for aqueous supercapacitors of high energy density. Electrochimica Acta, 2014, 130, 693-698.	2.6	25
360	Boosting Capacitive Sodium-Ion Storage in Electrochemically Exfoliated Graphite for Sodium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 52635-52642.	4.0	25

#	Article	IF	CITATIONS
361	Titania nanotube synthesized by a facile, scalable and cheap hydrolysis method for reversible lithium-ion batteries. Journal of Alloys and Compounds, 2012, 527, 132-136.	2.8	24
362	Facile hydrothermal method synthesis of coralline-like Li1.2Mn0.54Ni0.13Co0.13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Materials Research Bulletin, 2015, 63, 256-264.	2.7	24
363	Na1+xAlxGe2â^'xP3O12 (x = 0.5) glass–ceramic as a solid ionic conductor for sodium ion. Solid State Ionics, 2016, 289, 113-117.	1.3	24
364	A self-smoothing Li-metal anode enabled <i>via</i> a hybrid interface film. Journal of Materials Chemistry A, 2020, 8, 12045-12054.	5.2	24
365	Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Research, 2022, 15, 6026-6035.	5.8	24
366	N-Phenylmaleimide as a new polymerizable additive for overcharge protection of lithium-ion batteries. Electrochemistry Communications, 2008, 10, 727-730.	2.3	23
367	Effect of operational strategies on activated sludge's acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates. Journal of Hazardous Materials, 2016, 317, 221-228.	6.5	23
368	Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: Batch study and impacts of operational conditions. Journal of Biotechnology, 2018, 267, 36-44.	1.9	23
369	PET imaging of neural activity, β-amyloid, and tau in normal brain aging. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3859-3871.	3.3	23
370	Organic geochemical evaluation of Cretaceous Talhar Shale for shale oil and gas potential from Lower Indus Basin, Pakistan. Journal of Petroleum Science and Engineering, 2021, 200, 108404.	2.1	23
371	Understanding the role of cations and hydrogen bonds on the stability of aerobic granules from the perspective of the aggregation and adhesion behavior of extracellular polymeric substances. Science of the Total Environment, 2021, 795, 148659.	3.9	23
372	Enhanced biogas production in anaerobic digestion of sludge medicated by biochar prepared from excess sludge: Role of persistent free radicals and electron mediators. Bioresource Technology, 2022, 347, 126422.	4.8	23
373	Mild preparation of anode materials by a salt-free green method. Electrochemistry Communications, 2002, 4, 483-487.	2.3	22
374	A Universal Strategy For Nâ€Doped 2D Carbon Nanosheets With Subâ€Nanometer Micropore For Highâ€Performance Supercapacitor. Energy and Environmental Materials, 2021, 4, 569-576.	7.3	22
375	Dynamic Mechanochromic Optics with Tunable Strain Sensitivity for Strainâ€Responsive Digit Display. Advanced Optical Materials, 2020, 8, 2001472.	3.6	22
376	Asynchrony among species and functional groups and temporal stability under perturbations: Patterns and consequences. Journal of Ecology, 2020, 108, 2038-2046.	1.9	22
377	Enhanced Desalination Performance of a Flow-Electrode Capacitive Deionization System by Adding Vanadium Redox Couples and Carbon Nanotubes. Journal of Physical Chemistry C, 2021, 125, 1234-1239.	1.5	22
378	The Role of Lipid Metabolism in Influenza A Virus Infection. Pathogens, 2021, 10, 303.	1.2	22

#	Article	IF	CITATIONS
379	Versatile Asymmetric Separator with Dendriteâ€Free Alloy Anode Enables Highâ€Performance Li–S Batteries. Advanced Science, 2022, 9, .	5.6	22
380	Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries. RSC Advances, 2014, 4, 34615-34622.	1.7	21
381	An acid-free rechargeable battery based on PbSO ₄ and spinel LiMn ₂ O ₄ . Chemical Communications, 2014, 50, 13714-13717.	2.2	21
382	Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface. Applied Physics Letters, 2014, 104, 113501.	1.5	21
383	Novel self-assembled natural graphite based composite anodes with improved kinetic properties in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 9865-9872.	5.2	21
384	A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendriteâ€Free Lithium Metal Anodes. ChemElectroChem, 2019, 6, 5413-5419.	1.7	21
385	Carbonâ€Free Cathode Materials for Liâ^'O ₂ Batteries. Batteries and Supercaps, 2019, 2, 428-439.	2.4	21
386	Acid treatment enhances phosphorus release and recovery from waste activated sludge: Performances and related mechanisms. Science of the Total Environment, 2021, 763, 142947.	3.9	21
387	High cycle stability of Zn anodes boosted by an artificial electronic–ionic mixed conductor coating layer. Journal of Materials Chemistry A, 2022, 10, 7645-7652.	5.2	21
388	2-Phenylimidazole as an additive to prevent the co-intercalation of propylene carbonate in organic electrolyte for lithium-ion batteries. Journal of Power Sources, 2009, 189, 757-760.	4.0	20
389	"Rose Flowers―assembled from mesoporous NiFe2O4 nanosheets for energy storage devices. Journal of Materials Science: Materials in Electronics, 2017, 28, 14058-14068.	1.1	20
390	Cr2O3 nanoparticles: a fascinating electrode material combining both surface-controlled and diffusion-limited redox reactions for aqueous supercapacitors. Journal of Materials Science, 2018, 53, 16458-16465.	1.7	20
391	Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries. RSC Advances, 2020, 10, 13374-13378.	1.7	20
392	A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2021, 2, 4240-4245.	2.6	20
393	CoS ₂ Nanoparticles Anchored on MoS ₂ Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li ₂ O ₂ Heteroepitaxial Growth for Rechargeable Liâ€O ₂ Batteries. Small, 2022, 18, e2105752.	5.2	20
394	Construction of three pH-dependent luminescent metal–organic frameworks with 3-(4-carboxyphen-yl)-1,3-benzoimidazole. CrystEngComm, 2014, 16, 3883.	1.3	19
395	In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery. Journal of Power Sources, 2017, 342, 562-569.	4.0	19
396	Toward heat-tolerant potassium batteries based on pyrolyzed selenium disulfide/polyacrylonitrile positive electrode and gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 4544-4551.	5.2	19

#	Article	IF	CITATIONS
397	Electrochemical properties and cavitation erosion behaviors of HVOF sprayed (AlCoCrFeNi)1-X(WC-10Co)X composite coatings in NaCl medium. Ceramics International, 2021, 47, 29410-29422.	2.3	19
398	BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 25516-25523.	4.0	19
399	Improving electrochemical performance of graphitic carbon in PC-based electrolytes by using N-vinyl-2-pyrrolidone as an additive. Electrochemistry Communications, 2008, 10, 1571-1574.	2.3	18
400	Single-crystal to single-crystal transformation from a 1-D chain-like structure to a 2-D coordination polymer on heating. CrystEngComm, 2013, 15, 5606.	1.3	18
401	Graphene nanomesh photodetector with effective charge tunnelling from quantum dots. Nanoscale, 2015, 7, 4242-4249.	2.8	18
402	Preparation of Zn0.65Ni0.35O composite from metal-organic framework as electrode material for supercapacitor. Materials Letters, 2017, 194, 185-188.	1.3	18
403	CoS _x /C hierarchical hollow nanocages from a metal–organic framework as a positive electrode with enhancing performance for aqueous supercapacitors. RSC Advances, 2019, 9, 11253-11262.	1.7	18
404	Enhancement of anaerobic degradation of petroleum hydrocarbons by electron intermediate: Performance and mechanism. Bioresource Technology, 2020, 295, 122305.	4.8	18
405	Urchin-like 3D NiFe2O4 with 1D radially oriented nanorods as anode for lithium-ion based dual-ion pseudocapacitor. Electrochimica Acta, 2020, 333, 135557.	2.6	18
406	Zinc–Carbon Paper Composites as Anodes for Zn-Ion Batteries: Key Impacts on Their Electrochemical Behaviors. Energy & Fuels, 2020, 34, 13118-13125.	2.5	18
407	A High-Quality Monoclinic Nickel Hexacyanoferrate for Aqueous Zinc–Sodium Hybrid Batteries. Energy & Fuels, 2020, 34, 13104-13110.	2.5	18
408	Highly stabilized sulfur cathode with natural fenugreek gum as binder. Chemical Engineering Journal, 2021, 421, 127769.	6.6	18
409	Modifications of Separators for Li–S Batteries with Improved Electrochemical Performance. Russian Journal of Electrochemistry, 2020, 56, 365-377.	0.3	18
410	Investigation of the effects of V2O5 addition on the electrochemical properties of carbon anodes. Journal of Power Sources, 1998, 75, 167-170.	4.0	17
411	Nanostructured intercalation compounds as cathode materials for supercapacitors. Pure and Applied Chemistry, 2014, 86, 593-609.	0.9	17
412	A hybrid of CoOOH nanorods with carbon nanotubes as a superior positive electrode material for supercapacitors. RSC Advances, 2014, 4, 59088-59093.	1.7	17
413	Binder-free One-dimensional NiCo ₂ O ₄ Nanowires@Carbon Papers Composite as an Anode for Lithium-Ion Batteries. Energy & Fuels, 2020, 34, 13111-13117.	2.5	17
414	Superior potassium storage behavior of hard carbon facilitated by ether-based electrolyte. Carbon, 2021, 179, 60-67.	5.4	17

#	Article	IF	CITATIONS
415	Electrochemical Sensor for Directional Recognition and Measurement of Antibiotic Resistance Genes in Water. Analytical Chemistry, 2022, 94, 732-739.	3.2	17
416	Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 104995-105002.	1.7	16
417	Functional dissimilarity, not phylogenetic relatedness, determines interspecific interactions among plants in the Tibetan alpine meadows. Oikos, 2017, 126, 381-388.	1.2	16
418	Binary nickel–cobalt metal–organic frameworks as electrode for high performance pseudocapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 19477-19486.	1.1	16
419	Co-N-Doped Carbon as an Efficient Catalyst for Lithium–Oxygen Batteries. Energy & Fuels, 2020, 34, 10225-10231.	2.5	16
420	Limited inorganic N niche partitioning by nine alpine plant species after long-term nitrogen addition. Science of the Total Environment, 2020, 718, 137270.	3.9	16
421	Co ₃ O ₄ @NiCo ₂ O ₄ double-shelled nanocages with hierarchical hollow structure and oxygen vacancies as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries. Dalton Transactions, 2021, 50, 2093-2101.	1.6	16
422	Ambientâ€6table Twoâ€Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angewandte Chemie, 2021, 133, 8771-8775.	1.6	16
423	A Novel Electrolyte Additive Enables High-Voltage Operation of Nickel-Rich Oxide/Graphite Cells. Journal of Physical Chemistry Letters, 2021, 12, 4327-4338.	2.1	16
424	Sulfur nanoparticles/Ti ₃ C ₂ T _x MXene with an optimum sulfur content as a cathode for highly stable lithium–sulfur batteries. Dalton Transactions, 2021, 50, 5574-5581.	1.6	16
425	Oxygen Defect-Enriched Hierarchical NiCo ₂ O ₄ Hollow Rectangular Nanobars with Enhanced Bifunctional Oxygen Electrocatalysis for Efficient Rechargeable Zinc–Air Batteries. Energy & Fuels, 2022, 36, 6542-6551.	2.5	16
426	EXCELLENT ELECTROCHEMICAL BEHAVIOR OF LIMn2O4 IN AQUEOUS ELECTROLYTE. Functional Materials Letters, 2010, 03, 151-154.	0.7	15
427	Biosorption of Sr(II) from aqueous solutions using aerobic granules: equilibrium and mechanisms. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 193-202.	0.7	15
428	Microstructural strength deterioration of aerobic granule sludge under organic loading swap. Bioresource Technology, 2016, 221, 671-676.	4.8	15
429	Progress on Li ₃ VO ₄ as a Promising Anode Material for Liâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1789-1796.	2.6	15
430	Preparation of 3-dimensional flower-like NiFe2O4 with enhanced adsorptive performance for water contaminants. Journal of Alloys and Compounds, 2017, 727, 484-490.	2.8	15
431	Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing. Analytica Chimica Acta, 2018, 1013, 26-35.	2.6	15
432	A comment on the need to distinguish between cell and electrode impedances. Journal of Solid State Electrochemistry, 2019, 23, 717-724.	1.2	15

#	Article	IF	CITATIONS
	Diet Shifts Explain Temporal Trends of Pollutant Levels in Indo-Pacific Humpback Dolphins (<i>Sousa) Tj ETQq1 1</i>	0.784314	rgBT /Overlo
433	13110-13120.	4.6	15
434	Highly Stabilized Silicon Nanoparticles for Lithium Storage <i>via</i> Hierarchical Carbon Architecture. ACS Applied Energy Materials, 2020, 3, 4777-4786.	2.5	15
435	A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochimica Acta, 2021, 367, 137421.	2.6	15
436	Changes of LiCoO[sub 2] Cathode Material for Lithium-Ion Battery during Long Cycling. Electrochemical and Solid-State Letters, 2007, 10, A283.	2.2	14
437	Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver. Electrochimica Acta, 2007, 52, 5417-5421.	2.6	14
438	3-Dimensional cuboid structured ZnFe ₂ O ₄ @C nano-whiskers as anode materials for lithium-ion batteries based on the in situ graft polymerization method. RSC Advances, 2016, 6, 96743-96751.	1.7	14
439	Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	14
440	An Aqueous Asymmetric Supercapacitor Based on Activated Carbon and Tungsten Trioxide Nanowire Electrodes. Chinese Journal of Chemistry, 2017, 35, 61-66.	2.6	14
441	The influence of manganese ions doping on nanosheet assembly NiFe2O4 for the removal of Congo red. Journal of Alloys and Compounds, 2018, 763, 771-780.	2.8	14
442	Disproportionation of Sodium Superoxide in Metal–Air Batteries. Angewandte Chemie, 2018, 130, 10054-10058.	1.6	14
443	Carbon oated SnS Nanosheets Supported on Porous Microspheres as Negative Electrode Material for Sodiumâ€lon Batteries. Energy Technology, 2020, 8, 2000258.	1.8	14
444	Shifts in plant community composition weaken the negative effect of nitrogen addition on community-level arbuscular mycorrhizal fungi colonization. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200483.	1.2	14
445	High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure. Energies, 2020, 13, 1602.	1.6	14
446	Vertical 2-dimensional heterostructure SnS-SnS2 with built-in electric field on rGO to accelerate charge transfer and improve the shuttle effect of polysulfides. Journal of Colloid and Interface Science, 2022, 608, 120-130.	5.0	14
447	Hydrogen Production by Photoelectrochemically Splitting Solutions of Formic Acid. ChemSusChem, 2011, 4, 1475-1480.	3.6	13
448	Recovery of dehydrated aerobic granules: A comparison. Bioresource Technology, 2018, 267, 769-773.	4.8	13
449	Cascade alkylation and deuteration with aryl iodides <i>via</i> Pd/norbornene catalysis: an efficient method for the synthesis of congested deuterium-labeled arenes. Chemical Communications, 2019, 55, 8567-8570.	2.2	13
450	Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances, 2021, 3, 5525-5541.	2.2	13

Yuping Wu

#	Article	IF	CITATIONS
451	Ti ₃ C ₂ T _{<i>x</i>} MXenes-based flexible materials for electrochemical energy storage and solar energy conversion. Nanophotonics, 2022, 11, 3215-3245.	2.9	13
452	Lowering sensitivity of anode materials for lithium ion batteries towards humidity. Carbon, 2003, 41, 437-443.	5.4	12
453	Electrochemical performance of a novel surface modified spherical graphite as anode material for lithium ion batteries. Journal of Applied Electrochemistry, 2006, 36, 1307-1310.	1.5	12
454	Tailoring the Porous Structure of Monoâ€dispersed Hierarchically Nitrogenâ€doped Carbon Spheres for Highly Efficient Oxygen Reduction Reaction. Energy and Environmental Materials, 2021, 4, 81-87.	7.3	12
455	RESEARCH PROGRESS OF GEL POLYMER ELECTROLYTES FOR LITHIUM ION BATTERIES. Acta Polymerica Sinica, 2011, 011, 125-131.	0.0	12
456	Two-dimensional graphitic carbon nitride/N-doped carbon with a direct Z-scheme heterojunction for photocatalytic generation of hydrogen. Nanoscale Advances, 2021, 3, 6580-6586.	2.2	12
457	The Protective Effect of Mulberry Leaf Flavonoids on High-Carbohydrate-Induced Liver Oxidative Stress, Inflammatory Response and Intestinal Microbiota Disturbance in Monopterus albus. Antioxidants, 2022, 11, 976.	2.2	12
458	Tunable amorphous carbon nanotubes prepared by a simple template. Materials Letters, 2009, 63, 1955-1957.	1.3	11
459	A comprehensive comparison of bacterial and fungal aerobic granules: formation, properties, surface modification, and biosorption of metals. RSC Advances, 2015, 5, 104062-104070.	1.7	11
460	Optical Properties of Ultraviolet Quantum Dot Light-Emitting Devices Using ZnO-Cores With a MgO-Shell. Journal of Display Technology, 2015, 11, 461-465.	1.3	11
461	Fate of Organic Pollutants in a Full-Scale Drinking Water Treatment Plant Using O ₃ -BAC. Ozone: Science and Engineering, 2015, 37, 257-268.	1.4	11
462	Degradation of organic dyes by Si/SiOx core-shell nanowires: Spontaneous generation of superoxides without light irradiation. Chemosphere, 2016, 144, 836-841.	4.2	11
463	Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. Ecological Research, 2020, 35, 162-169.	0.7	11
464	Ant assemblage composition explains high predation pressure on artificial caterpillars during early night. Ecological Entomology, 2020, 45, 547-554.	1.1	11
465	Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Chemical Communications, 2021, 57, 1607-1610.	2.2	11
466	SnS Nanoparticles Grown on Sn-Atom-Modified N,S-Codoped Mesoporous Carbon Nanosheets as Electrocatalysts for CO ₂ Reduction to Formate. ACS Applied Nano Materials, 2021, 4, 2257-2264.	2.4	11
467	Regulating Graphitic Carbon Nitride/Cocatalyst by an Amorphous MoS ₂ Conformal Multifunctional Intermediate Layer for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 13288-13296.	2.5	11
468	Thermodynamic correlation of partial and saturation swelling of styrene-acrylonitrile copolymer particles by styrene and acrylonitrile monomers. Journal of Applied Polymer Science, 1997, 64, 931-939.	1.3	10

#	Article	IF	CITATIONS
469	Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and fumed silicas. Journal of Solid State Electrochemistry, 2006, 11, 21-26.	1.2	10
470	Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on <i>β</i> -Cyclodextrins and Alkaline Treatments. Archaea, 2016, 2016, 1-8.	2.3	10
471	Influence of operational conditions on the stability of aerobic granules from the perspective of quorum sensing. Environmental Science and Pollution Research, 2017, 24, 7640-7649.	2.7	10
472	CoCO3 from one-step micro-emulsion method as electrode materials for Faradaic capacitors. Scientific Reports, 2017, 7, 2026.	1.6	10
473	Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery. Ionics, 2018, 24, 661-670.	1.2	10
474	Conductive Polymer Coated Cathodes in Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 951-956.	2.5	10
475	Thiocyanate Ion Ligand-Induced Atomically Dispersed Fe–N–S Tridoped Hollow Catalyst for High-Performance Zinc–Air Rechargeable Batteries. Energy & Fuels, 2020, 34, 11620-11627.	2.5	10
476	Study of spherical Li1.2-xNaxMn0.534Ni0.133Co0.133O2 cathode based on dual Li+/Na+ transport system for Li-ion batteries. Solid State Ionics, 2020, 350, 115326.	1.3	10
477	Construction of Hierarchical Hollow MoS ₂ /Carbon Microspheres for Enhanced Lithium Storage Performance. Journal of the Electrochemical Society, 2020, 167, 100525.	1.3	10
478	A selenium-doped carbon anode of high performance for lithium ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 457-464.	1.2	10
479	Fabrication of S,N-Doped Carbon-Coated SnS ₂ /SnS Heterostructures Supported by Hollow Carbon Microspheres for Sodium-Ion Storage. Journal of the Electrochemical Society, 2021, 168, 050527.	1.3	10
480	Enhancing the Catalytic Kinetics of Electrodes by using a Multidimensional Carbon Network for Applications in Vanadium Redox Flow Batteries. ChemElectroChem, 2020, 7, 1023-1028.	1.7	10
481	A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 13814-13820.	5.2	10
482	Electrochemical studies of albumin–heme hybrid in aqueous media by modified electrode. Inorganica Chimica Acta, 2001, 322, 120-124.	1.2	9
483	Non-stoichiometric synthesis and electrochemical performance of LiFe _{1-x} PO ₄ / C cathode materials for lithium ion batteries. Functional Materials Letters, 2014, 07, 1450016.	0.7	9
484	Enthalpy of Solid–Liquid Phase Change Confined in Porous Materials. Industrial & Engineering Chemistry Research, 2016, 55, 11536-11541.	1.8	9
485	Significantly improved cyclability of lithium manganese oxide, simultaneously inhibiting electrochemical and thermal decomposition of the electrolyte by the use of an additive. RSC Advances, 2017, 7, 46594-46603.	1.7	9
486	Invasive Spartina alterniflora exhibits increased resistance but decreased tolerance to a generalist insect in China. Journal of Pest Science, 2019, 92, 823-833.	1.9	9

Yuping Wu

#	Article	IF	CITATIONS
487	Access to polyfunctionalized carbazoles through π-extension of 2-methyl-3-oxoacetate indoles. Organic Chemistry Frontiers, 2019, 6, 3741-3745.	2.3	9
488	Copper Doped Li 3 VO 4 as Anode Material for Lithiumâ€ion Batteries. Electroanalysis, 2020, 32, 2635-2641.	1.5	9
489	A Separator Modified with Rutile Titania and Threeâ€Dimensional Interconnected Grapheneâ€Like Carbon for Advanced Liâ^'S Batteries. ChemElectroChem, 2022, 9, .	1.7	9
490	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	1.2	8
491	Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-By-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance. Polymers, 2020, 12, 1572.	2.0	8
492	Understanding the dependence of start-up and stability of aerobic granule on pH from the perspective of adhesion behavior and properties of extracellular polymeric substances. Environmental Research, 2021, 198, 111311.	3.7	8
493	Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: Rapid granulation of aerobic granular sludge. Environmental Research, 2022, 208, 112780.	3.7	8
494	A Gelled Polymer Electrolyte with the Blend of PMMA and PVDF of Novel Stick-Like Morphology. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1039-1047.	1.4	7
495	Reprint of "Suppressing propylene carbonate decomposition by coating graphite electrode foil with silver― Electrochimica Acta, 2007, 53, 1380-1384.	2.6	7
496	Visible-light-driven hydrogen generation from formic acid over CdS photoanode. International Journal of Hydrogen Energy, 2015, 40, 14290-14296.	3.8	7
497	Metal oxides in batteries. , 2018, , 127-167.		7
498	Versatile Synthesis of Ultrafine Ternary Spinel Oxides/Carbon Nanohybrids toward the Oxygen Reduction Reaction. Energy & Fuels, 2020, 34, 9069-9075.	2.5	7
499	The physiological and ecological properties of bacterial persisters discovered from municipal sewage sludge and the potential risk. Environmental Research, 2022, 205, 112481.	3.7	7
500	Freezing-Tolerant Hydrogel Composed of Sulfonated Chitosan and Poly(vinyl alcohol) Featuring Excellent Stretchability and High Proton Conduction. ACS Applied Polymer Materials, 2022, 4, 1466-1474.	2.0	7
501	Effect of calcination temperature on the electrochemical performance of nickel nanoparticles on carbon coated porous silicon nanospheres anode for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129193.	2.3	7
502	Exploiting the synergistic effect of multiphase MnO ₂ stabilized by an integrated conducting network for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2022, 6, 1956-1963.	3.2	7
503	Materials for lithium-ion batteries by mechanochemical methods. , 2010, , 361-408.		6
504	Removal of viruses and disinfection by-products at two drinking water treatment plants in southern China. Desalination and Water Treatment, 2012, 48, 221-231.	1.0	6

#	Article	IF	CITATIONS
505	Phage MS2 Inactivation in Pure and Filtered Water: Effect of Pseudo-Kinetics and Other Factors. Ozone: Science and Engineering, 2014, 36, 86-93.	1.4	6
506	Effect of several factors on pseudo-kinetics in chlorine disinfection of phage MS2. Desalination and Water Treatment, 2016, 57, 4974-4981.	1.0	6
507	The effects of continuous Cu(II) exposure compared with a shock dosage of Cu(II) on pollutant removal in activated sludge. Desalination and Water Treatment, 2016, 57, 5842-5850.	1.0	6
508	Electrical transport properties in Co nanocluster-assembled granular film. Journal of Applied Physics, 2017, 121, .	1.1	6
509	Hollow microspherical layered xLi2MnO3·(1-x)LiNiO2 (x=0.3–0.7) as cathode material for lithium–ion batteries. Journal of Alloys and Compounds, 2019, 790, 1034-1042.	2.8	6
510	Indirect effect of nitrogen enrichment modified invertebrate herbivory through altering plant community composition in an alpine meadow. Journal of Plant Ecology, 2019, 12, 693-702.	1.2	6
511	Alternating nitrogen feeding strategy induced aerobic granulation: Influencing conditions and mechanism. Journal of Environmental Sciences, 2021, 109, 135-147.	3.2	6
512	One-step hydrothermal synthesis of Co–Ni–S/Ni foam as an electrocatalyst for nitrogen reduction reaction. Materials Today Energy, 2022, 26, 100995.	2.5	6
513	Formation/Decomposition of Li ₂ O ₂ Induced by Porous NiCeO _{<i>x</i>} Nanorod Catalysts in Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, , .	4.0	6
514	Advances on Na-K liquid alloy-based batteries. Journal of Energy Chemistry, 2022, 71, 313-323.	7.1	6
515	Carbon anode materials based on copolymers of nitrogen-containing monomers with DVB. Journal of Materials Science, 1999, 34, 4253-4258.	1.7	5
516	Redox Behavior of Human Serum Albumin–Heme Hybrid on Graphite Electrode Modified with Didodecyldimethylammonium Bromide. Chemistry Letters, 2000, 29, 1194-1195.	0.7	5
517	Nanoporous Carbon as Anode Material of High Rate Capability for Lithium Ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1216-1219.	0.8	5
518	Na _{0.35} MnO ₂ /CNT Nanocomposite from a Hydrothermal Method as Electrode Material for Aqueous Supercapacitors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2908-2913.	0.6	5
519	Biosynthesis, characterization and potentiality of lipopeptides produced by Bacillus flexus S1 without inductive carbon sources. RSC Advances, 2016, 6, 85074-85082.	1.7	5
520	Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
521	Enhanced Capacitive Desalination Performance of Porous Carbon Spheres@ <scp>MnO₂</scp> Composite. Chinese Journal of Chemistry, 2017, 35, 55-60.	2.6	5
522	Synthesis of Micrometerâ€Size Poly(Methyl Methacrylate) Particles by Utilizing Microsuspension Iodine Transfer Polymerization (<i>ms</i> ITP): Kinetic Approach. Macromolecular Theory and Simulations, 2018, 27, 1800029.	0.6	5

#	Article	IF	CITATIONS
523	Multi-level non-intrusive load identification based on k-NN. , 2019, , .		5
524	A Three-Term Gradient Descent Method with Subspace Techniques. Mathematical Problems in Engineering, 2021, 2021, 1-7.	0.6	5
525	A sensor of liquid methanol for direct methanol fuel cells. Analytica Chimica Acta, 2021, 1177, 338785.	2.6	5
526	Strategies toward anode stabilization in nonaqueous alkali metal–oxygen batteries. Chemical Communications, 2022, 58, 8014-8024.	2.2	5
527	An experimental study on saturation swelling of styrene–acryronitrile copolymer particles with styrene and acrylonitrile monomers. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2491-2498.	2.4	4
528	Kinetics and mechanisms of the seeded emulsion copolymerization of styrene and acrylonitrile. Macromolecular Symposia, 1995, 92, 233-242.	0.4	4
529	Saturation Swelling of ABS Latex Particles by Styrene and Acrylonitrile Monomer Mixtures. Industrial & Engineering Chemistry Research, 1997, 36, 1218-1223.	1.8	4
530	A new fuzzy lyapunov function approach to stability analysis and control synthesis for Takagi-Sugeno fuzzy systems. , 2013, , .		4
531	Effect of continuously dosing Cu(II) on pollutant removal and soluble microbial products in a sequencing batch reactor. Water Science and Technology, 2015, 72, 1653-1661.	1.2	4
532	In situ construction of low permeable barrier in soil to prevent pollutant migration by applying weak electric field. Journal of Environmental Management, 2017, 193, 584-591.	3.8	4
533	Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTaxO12. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1261-1264.	0.4	4
534	A three-dimensional interconnected nitrogen-doped graphene-like porous carbon-modified separator for high-performance Li–S batteries. Sustainable Energy and Fuels, 2020, 4, 4264-4272.	2.5	4
535	Agar Acts as Cathode Microskin to Extend the Cycling Life of Zn//α-MnO2 Batteries. Materials, 2021, 14, 4895.	1.3	4
536	REMOVAL OF ARSENIC AND HEAVY METALS FROM ARSENICCONTAINING ACID WASTEWATER WITH IRON SALT AND LIME. Environmental Engineering and Management Journal, 2019, 18, 2655-2662.	0.2	4
537	Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells. International Journal of Energy Research, 2022, 46, 10919-10929.	2.2	4
538	<i>In situ</i> bridging nanotwinned all-solid-state Z-scheme g-C ₃ N ₄ /CdCO ₃ /CdS heterojunction photocatalyst by metal oxide for H ₂ evolution. Nanoscale, 2022, 14, 7408-7417.	2.8	4
539	Effects of Morphology on the Properties of Carbon Anodes. Electrochemical and Solid-State Letters, 1999, 2, 118.	2.2	3
540	Preparation of hybrid composite microspheres containing nanosilicon via microsuspension polymerization. Journal of Applied Polymer Science, 2016, 133, .	1.3	3

Yuping Wu

#	ARTICLE	IF	CITATIONS
541	Partitioning effect of nitrogen catalyst into polymerizing particles on dispersion reversible chain transfer catalyzed polymerization (<i>dispersion</i> RTCP) of methyl methacrylate in supercritical carbon dioxide and organic solvents. Journal of Polymer Science Part A, 2019, 57, 613-620.	2.5	3
542	Metamorphosis and skeletal development of hybrid Epinephelus awoara (♀) and Epinephelus tukula (â™,) progenies. Aquaculture, 2021, 530, 735727.	1.7	3
543	An Economical Highâ€Throughput "FPâ€Tag―Assay for Screening Glycosyltransferase Inhibitors**. ChemBioChem, 2021, 22, 1391-1395.	1.3	3
544	Virtual Special Issue of Research Highlights on Sustainable Energy and Clean Fuels at State Key Laboratory of Materials-Oriented Chemical Engineering (SKL-MCE), China. Energy & Fuels, 2021, 35, 905-910.	2.5	3
545	Interaction between organic matter and tetracycline in river sediments in cold regions. Environmental Science and Pollution Research, 2022, 29, 24941-24950.	2.7	3
546	Stability of Bilayer Films of YBa2Cu3O7 and Y-ZrO2 Grown on LaAlO3 by Pulsed Organometallic Beam Epitaxy. Chemical Vapor Deposition, 1998, 4, 99-102.	1.4	2
547	Novel composite anode materials of Ag and polymeric carbon for lithium ion batteries. Polymers for Advanced Technologies, 2006, 17, 587-590.	1.6	2
548	Kinetic Modeling and Simulation of Emulsion Grafting Copolymerization of Styrene and Acrylonitrile in the Presence of Polybutadiene Seed Latex Particles. Industrial & Engineering Chemistry Research, 2014, 53, 17580-17588.	1.8	2
549	Bio-augmentative volatile fatty acid production from waste activated sludge hydrolyzed at pH 12. RSC Advances, 2015, 5, 50033-50039.	1.7	2
550	Innovative one-step synthesis of hollow polymer particles by microsuspension polymerization of styrene and methyl acrylate with Mg(OH)2 as dispersant. Colloid and Polymer Science, 2017, 295, 565-572.	1.0	2
551	A three-dimensional conducting network of rGO-in-graphite-felt as electrode for vanadium redox flow batteries. Electrochemical Energy Technology, 2018, 4, 60-65.	1.2	2
552	Ultrasmall Polymer Nanoparticles Formed by Instantaneous Nanosplitting of Surfactant-Free Emulsion. Langmuir, 2020, 36, 7933-7942.	1.6	2
553	Future Prospects and Challenges of Renewable Energy: A Case Study of Nepal. , 2021, , .		2
554	Comparative Study of the Electrochemical Performance of Different Separators in Aprotic Li–O ₂ Batteries. Energy & Fuels, 2022, 36, 4609-4615.	2.5	2
555	Stress-Tolerant Printed Architectures Toward Stable Cycling of Ultrahigh-Loading Ni-Rich Layered Oxide Cathodes for Wearable Energy Storage Devices. Energy & Fuels, 2022, 36, 5009-5017.	2.5	2
556	Polymer Electrolytes for Lithium-Ion Batteries. ECS Meeting Abstracts, 2010, , .	0.0	1
557	Highly effective in-depth dewatering of excess sludge using methanol. RSC Advances, 2014, 4, 48952-48958.	1.7	1
558	Effect of sodium alginate on UVC inactivation of coliphage MS2. RSC Advances, 2015, 5, 104779-104784.	1.7	1

#	Article	IF	CITATIONS
559	Fabrication of sponge-like α-Ni(OH)2 on styrene–acrylonitrile copolymer (SAN)-derived carbon spheres as electrode materials for supercapacitor application. RSC Advances, 2016, 6, 100623-100631.	1.7	1
560	A membrane based on sulfonated polystyrene for a vanadium solid-salt battery. Journal of Solid State Electrochemistry, 2016, 20, 943-948.	1.2	1
561	Special Issue of "Novel Energy Storage Systems and Materials― Chinese Journal of Chemistry, 2017, 35, 5-5.	2.6	1
562	Perceived social support in Chinese family caregivers of patients with dementia. International Journal of Nursing Practice, 2022, 28, e12945.	0.8	1
563	Latest advance on carbon electrode materials for all vanadium redox flow battery. Scientia Sinica Chimica, 2014, 44, 1280-1288.	0.2	1
564	Inhibiting Lithium Dendrites in Lithium Metal Batteries. Aspects in Mining & Mineral Science, 2020, 4, .	0.0	1
565	Nano Anode Materials for Lithium-Ion Batteries. , 2014, , 127-176.		1
566	Experimental Method for Evaluating the Reactivity of Alkali-Carbonate Reaction Activity. Materials, 2022, 15, 2853.	1.3	1
567	Rapid Test Method for Evaluating Inhibiting Effectiveness of Supplementary Cementitious Materials on Alkali–Silica Reaction Expansion of Concrete. Materials, 2022, 15, 3202.	1.3	1
568	Hierarchically Porous Carbon from Lychee Seed as Cathode Host for Fastâ€Charging and High Area Capacity Li–Se Batteries. Energy Technology, 0, , 2200376.	1.8	1
569	9th International Conference on Novel Materials and their Synthesis (NMS-IX) and 23rd International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXIII). Pure and Applied Chemistry, 2014, 86, 555-556.	0.9	0
570	LiCoO2-Based Positive Electrode Material. Electrochemical Energy Storage and Conversion, 2015, , 19-34.	0.0	0
571	LiNiO2-Based Positive Electrode Materials. Electrochemical Energy Storage and Conversion, 2015, , 35-58.	0.0	0
572	Spinel LiMn2O4-Based Positive Electrode Materials. Electrochemical Energy Storage and Conversion, 2015, , 59-94.	0.0	0
573	Corrigendum to "Rapid synthesis of Li4Ti5O12/grapheme composite with superior rate capability by a microwave-assisted hydrothermal method" [Nano Energy (2014) 8, 297–304]. Nano Energy, 2016, 30, 910.	8.2	0
574	Correction: An acid-free rechargeable battery based on PbSO4 and spinel LiMn2O4. Chemical Communications, 2016, 52, 7620-7620.	2.2	0
575	Layout decomposition algorithms for double patterning lithography. , 2016, , .		0
576	Smooth Muscle Cell Responses to Poly(ε-Caprolactone) Triacrylate Networks with Different Crosslinking Time. International Journal of Molecular Sciences, 2020, 21, 8932.	1.8	0

#	Article	IF	CITATIONS
577	An MSCN-Based Virtual Computing Cell-Oriented BSM Dissemination Mechanism. Mobile Information Systems, 2021, 2021, 1-13.	0.4	0
578	Aqueous Rechargeable Lithium Batteries (ARLB). , 2014, , 105-107.		0
579	Lower Bound on the Speed of Nonlocal Correlations without Locality and Measurement Choice Loopholes. , 2014, , .		0
580	Gel Membranes for Lithium Ion Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0