Ruediger Rudolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793697/publications.pdf Version: 2024-02-01

RUEDICER RUDOLE

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. Cell Metabolism, 2007, 6, 458-471.	16.2	1,614
3	Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO Journal, 2010, 29, 1774-1785.	7.8	494
4	Autophagy Impairment in Muscle Induces Neuromuscular Junction Degeneration and Precocious Aging. Cell Reports, 2014, 8, 1509-1521.	6.4	309
5	In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. Journal of Cell Biology, 2004, 166, 527-536.	5.2	195
6	Looking forward to seeing calcium. Nature Reviews Molecular Cell Biology, 2003, 4, 579-586.	37.0	187
7	Degeneration of Neuromuscular Junction in Age and Dystrophy. Frontiers in Aging Neuroscience, 2014, 6, 99.	3.4	147
8	Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. Journal of Cell Science, 2003, 116, 1339-1348.	2.0	129
9	Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 746-750.	7.1	123
10	Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. Journal of Cell Biology, 2006, 173, 187-193.	5.2	112
11	Dynamics of Immature Secretory Granules: Role of Cytoskeletal Elements during Transport, Cortical Restriction, and F-Actin-dependent Tethering. Molecular Biology of the Cell, 2001, 12, 1353-1365.	2.1	102
12	Time-resolved analysis and visualization of dynamic processes in living cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7950-7955.	7.1	101
13	Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy, 2014, 10, 123-136.	9.1	86
14	NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. Journal of Cell Science, 2006, 119, 1604-1611.	2.0	81
15	The role of myosin V in exocytosis and synaptic plasticity. Journal of Neurochemistry, 2011, 116, 177-191.	3.9	73
16	mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4. Nature Communications, 2019, 10, 3187.	12.8	71
17	Measurements of mitochondrial calcium in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1317-1323.	1.0	68
18	Muscle Expression of <i>SOD1^{G93A}</i> Triggers the Dismantlement of Neuromuscular Junction <i>via</i> PKC-Theta. Antioxidants and Redox Signaling, 2018, 28, 1105-1119.	5.4	56

#	Article	IF	CITATIONS
19	Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. Age, 2013, 35, 1663-1674.	3.0	55
20	Myosin Va cooperates with PKA RIα to mediate maintenance of the endplate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2031-2036.	7.1	52
21	In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy. Autophagy, 2018, 14, 311-335.	9.1	51
22	Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Frontiers in Molecular Biosciences, 2020, 7, 20.	3.5	50
23	In vitro skin three-dimensional models and their applications. Journal of Cellular Biotechnology, 2017, 3, 21-39.	0.5	49
24	Role of Myosin Va in the Plasticity of the Vertebrate Neuromuscular Junction In Vivo. PLoS ONE, 2008, 3, e3871.	2.5	48
25	Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled α-subunits. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 621-625.	7.1	45
26	A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer, 2019, 19, 402.	2.6	41
27	Postnatal Development and Distribution of Sympathetic Innervation in Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2018, 19, 1935.	4.1	40
28	A Novel Optical Tissue Clearing Protocol for Mouse Skeletal Muscle to Visualize Endplates in Their Tissue Context. Frontiers in Cellular Neuroscience, 2019, 13, 49.	3.7	39
29	Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. Journal of Cell Science, 2012, 125, 714-723.	2.0	38
30	Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. Journal of Applied Physiology, 2011, 111, 358-366.	2.5	36
31	Neuromuscular junction degeneration in muscle wasting. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 1.	2.5	32
32	A cationic near infrared fluorescent agent and ethyl-cinnamate tissue clearing protocol for vascular staining and imaging. Scientific Reports, 2019, 9, 521.	3.3	30
33	Immunohistochemical studies of GLWamides in Cnidaria. Cell and Tissue Research, 1998, 294, 169-177.	2.9	27
34	Motor Endplate—Anatomical, Functional, and Molecular Concepts in the Historical Perspective. Cells, 2019, 8, 387.	4.1	27
35	Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Frontiers in Physiology, 2013, 4, 290.	2.8	26
36	Reduced muscle strength in ether lipidâ€deficient mice is accompanied by altered development and function of the neuromuscular junction. Journal of Neurochemistry, 2017, 143, 569-583.	3.9	25

#	Article	IF	CITATIONS
37	A Novel Labeling Approach Identifies Three Stability Levels of Acetylcholine Receptors in the Mouse Neuromuscular Junction In Vivo. PLoS ONE, 2011, 6, e20524.	2.5	23
38	Participation of Myosin Va and Pka Type I in the Regeneration of Neuromuscular Junctions. PLoS ONE, 2012, 7, e40860.	2.5	22
39	Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Frontiers in Human Neuroscience, 2021, 15, 667709.	2.0	22
40	Distinct Roles of Myosin Va in Membrane Remodeling and Exocytosis of Secretory Granules. Traffic, 2010, 11, 637-650.	2.7	20
41	Investigating signal transduction with genetically encoded fluorescent probes. Delivered on 22 October 2002 at the 28th FEBS Meeting in Istanbul. FEBS Journal, 2003, 270, 2343-2352.	0.2	19
42	PKA microdomain organisation and cAMP handling in healthy and dystrophic muscle in vivo. Cellular Signalling, 2009, 21, 819-826.	3.6	19
43	Time Lapse in Vivo Visualization of Developmental Stabilization of Synaptic Receptors at Neuromuscular Junctions. Journal of Biological Chemistry, 2010, 285, 34589-34596.	3.4	18
44	GFPT1 deficiency in muscle leads to myasthenia and myopathy in mice. Human Molecular Genetics, 2018, 27, 3218-3232.	2.9	18
45	Nicotinic acetylcholine receptor at vertebrate motor endplates: Endocytosis, recycling, and degradation. Neuroscience Letters, 2019, 711, 134434.	2.1	18
46	Rab3D Is Critical for Secretory Granule Maturation in PC12 Cells. PLoS ONE, 2013, 8, e57321.	2.5	18
47	Molecular basis for the fold organization and sarcomeric targeting of the muscle atrogin MuRF1. Open Biology, 2014, 4, 130172.	3.6	17
48	Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I. Open Biology, 2016, 6, 160114.	3.6	17
49	Long-term 3D culture of the SCC4 cell line using three different culture methods and initial seeding densities. Journal of Cellular Biotechnology, 2017, 3, 41-50.	0.5	17
50	Turnover of acetylcholine receptors at the endplate revisited: novel insights into nerve-dependent behavior. Journal of Muscle Research and Cell Motility, 2015, 36, 517-524.	2.0	16
51	Progress of endocytic CHRN to autophagic degradation is regulated by RAB5-GTPase and T145 phosphorylation of SH3GLB1 at mouse neuromuscular junctions in vivo. Autophagy, 2016, 12, 2300-2310.	9.1	16
52	αâ^'Calcitonin gene-related peptide inhibits autophagy and calpain systems and maintains the stability of neuromuscular junction in denervated muscles. Molecular Metabolism, 2019, 28, 91-106.	6.5	16
53	Versatile roles for myosin Va in dense core vesicle biogenesis and function. Biochemical Society Transactions, 2010, 38, 199-204.	3.4	15
54	Bone Sialoprotein Shows Enhanced Expression in Early, High-Proliferation Stages of Three-Dimensional Spheroid Cell Cultures of Breast Cancer Cell Line MDA-MB-231. Frontiers in Oncology, 2019, 9, 36.	2.8	15

#	Article	IF	CITATIONS
55	Towards optimized breast cancer 3D spheroid mono- and co-culture models for pharmacological research and screening. Journal of Cellular Biotechnology, 2019, 5, 89-101.	0.5	15
56	A Scaffold-Free 3-D Co-Culture Mimics the Major Features of the Reverse Warburg Effect In Vitro. Cells, 2020, 9, 1900.	4.1	13
57	Loss of Protein Kinase Csnk2b/CK2β at Neuromuscular Junctions Affects Morphology and Dynamics of Aggregated Nicotinic Acetylcholine Receptors, Neuromuscular Transmission, and Synaptic Gene Expression. Cells, 2019, 8, 940.	4.1	11
58	hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells, 2021, 10, 3292.	4.1	10
59	Analysis of Fast Dynamic Processes in Living Cells: High-Resolution and High-Speed Dual-Color Imaging Combined with Automated Image Analysis. BioTechniques, 2000, 28, 722-730.	1.8	9
60	Sensing Senses: Optical Biosensors to Study Gustation. Sensors, 2020, 20, 1811.	3.8	8
61	Green light for the secretory pathway. Protoplasma, 1999, 209, 1-8.	2.1	7
62	The impact of autophagy on peripheral synapses in health and disease. Frontiers in Bioscience - Landmark, 2016, 21, 1474-1487.	3.0	7
63	SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiology of Disease, 2019, 124, 218-229.	4.4	7
64	Analysis of calcium signaling in live human Tongue cell 3D-Cultures upon tastant perfusion. Cell Calcium, 2020, 87, 102164.	2.4	7
65	Investigating Second Messenger Signaling In Vivo. Methods in Enzymology, 2012, 505, 363-382.	1.0	6
66	An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Archiv European Journal of Physiology, 2020, 472, 1667-1691.	2.8	6
67	Regulatory Function of Sympathetic Innervation on the Endo/Lysosomal Trafficking of Acetylcholine Receptor. Frontiers in Physiology, 2021, 12, 626707.	2.8	6
68	A compact unc45b â€promoter drives muscleâ€specific expression in zebrafish and mouse. Genesis, 2016, 54, 431-438.	1.6	4
69	Effects of ASC Application on Endplate Regeneration Upon Glycerol-Induced Muscle Damage. Frontiers in Molecular Neuroscience, 2020, 13, 107.	2.9	4
70	3D Melanoma Cocultures as Improved Models for Nanoparticle-Mediated Delivery of RNA to Tumors. Cells, 2022, 11, 1026.	4.1	4
71	Avoiding longâ€ŧerm muscle damage upon ischaemia–reperfusion. Acta Physiologica, 2017, 219, 343-345.	3.8	3
72	Evidence for the subsynaptic zone as a preferential site for CHRN recycling at neuromuscular junctions. Small GTPases, 2019, 10, 395-402.	1.6	3

#	Article	IF	CITATIONS
73	Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models. Methods in Molecular Biology, 2021, 2265, 173-183.	0.9	3
74	Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei. Current Directions in Biomedical Engineering, 2020, 6, 398-401.	0.4	3
75	Extracellular Matrix Components Regulate Bone Sialoprotein Expression in MDA-MB-231 Breast Cancer Cells. Cells, 2021, 10, 1304.	4.1	1
76	Aggregation, Sorting and Transport of Chromogranins in the Regulated Secretory Pathway. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2004, 4, 179-185.	0.2	1
77	In Vivo Monitoring of Ca2+ Uptake into Subcellular Compartments of Mouse Skeletal Muscle. Methods in Molecular Biology, 2019, 1925, 127-142.	0.9	0