John D Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793518/publications.pdf

Version: 2024-02-01

516710 610901 1,173 29 16 24 citations h-index g-index papers 31 31 31 2066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A sub+cortical fMRlâ€based surface parcellation. Human Brain Mapping, 2022, 43, 616-632.	3.6	10
2	Sex-specific associations between maternal pregnancy-specific anxiety and newborn amygdalar volumes - preliminary findings from the FinnBrain Birth Cohort Study. Stress, 2022, 25, 213-226.	1.8	1
3	Aging-Related Differences in Structural and Functional Interhemispheric Connectivity. Cerebral Cortex, 2021, , .	2.9	O
4	Intersection of verbal memory and expressivity on cortical contrast and thickness in first episode psychosis. Psychological Medicine, 2020, 50, 1923-1936.	4.5	5
5	Sexâ€specific association between infant caudate volumes and a polygenic risk score for major depressive disorder. Journal of Neuroscience Research, 2020, 98, 2529-2540.	2.9	10
6	Cover Image, Volume 30, Issue 10. Hippocampus, 2020, 30, C1.	1.9	0
7	Newborn amygdalar volumes are associated with maternal prenatal psychological distress in a sex-dependent way. Neurolmage: Clinical, 2020, 28, 102380.	2.7	25
8	Newborn left amygdala volume associates with attention disengagement from fearful faces at eight months. Developmental Cognitive Neuroscience, 2020, 45, 100839.	4.0	13
9	Altered hippocampal centrality and dynamic anatomical covariance of intracortical microstructure in first episode psychosis. Hippocampus, 2020, 30, 1058-1072.	1.9	6
10	Association of Cumulative Paternal Early Life Stress With White Matter Maturation in Newborns. JAMA Network Open, 2020, 3, e2024832.	5.9	14
11	A Novel Approach for Manual Segmentation of the Amygdala and Hippocampus in Neonate MRI. Frontiers in Neuroscience, 2019, 13, 1025.	2.8	25
12	Cortical and subcortical T1 white/gray contrast, chronological age, and cognitive performance. NeuroImage, 2019, 196, 276-288.	4.2	25
13	Test-retest reliability of Diffusion Tensor Imaging metrics in neonates. NeuroImage, 2019, 197, 598-607.	4.2	31
14	Structural Associations of Cortical Contrast and Thickness in First Episode Psychosis. Cerebral Cortex, 2019, 29, 5009-5021.	2.9	17
15	Exploring Individual Brain Variability during Development based on Patterns of Maturational Coupling of Cortical Thickness: A Longitudinal MRI Study. Cerebral Cortex, 2019, 29, 178-188.	2.9	29
16	Predicting Intelligence Based on Cortical WM/GM Contrast, Cortical Thickness and Volumetry. Lecture Notes in Computer Science, 2019, , 57-65.	1.3	1
17	T1 white/gray contrast as a predictor of chronological age, and an index of cognitive performance. Neurolmage, 2018, 173, 341-350.	4.2	72
18	Developmental changes of cortical white–gray contrast as predictors of autism diagnosis and severity. Translational Psychiatry, 2018, 8, 249.	4.8	25

#	Article	IF	CITATIONS
19	The Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder. Biological Psychiatry, 2017, 82, 176-185.	1.3	93
20	Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE, 2017, 12, e0175870.	2. 5	230
21	Brain connectivity in normally developing children and adolescents. Neurolmage, 2016, 134, 192-203.	4.2	73
22	Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 2015, 138, 2046-2058.	7.6	169
23	A greater involvement of posterior brain areas in interhemispheric transfer in autism: fMRI, DWI and behavioral evidences. Neurolmage: Clinical, 2015, 8, 267-280.	2.7	21
24	Callosal fiber length and interhemispheric connectivity in adults with autism: Brain overgrowth and underconnectivity. Human Brain Mapping, 2013, 34, 1685-1695.	3.6	38
25	Network efficiency in autism spectrum disorder and its relation to brain overgrowth. Frontiers in Human Neuroscience, 2013, 7, 845.	2.0	40
26	Negative Associations between Corpus Callosum Midsagittal Area and IQ in a Representative Sample of Healthy Children and Adolescents. PLoS ONE, 2011, 6, e19698.	2.5	35
27	The Relation between Connection Length and Degree of Connectivity in Young Adults: A DTI Analysis. Cerebral Cortex, 2009, 19, 554-562.	2.9	44
28	Growthâ€related neural reorganization and the autism phenotype: a test of the hypothesis that altered brain growth leads to altered connectivity. Developmental Science, 2008, 11, 135-155.	2.4	115
29	Allometry in the corpus callosum in neonates: Sexual dimorphism. Human Brain Mapping, 0, , .	3.6	6