
Jean-Marie Fontmorin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2793509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms. Chemosphere, 2022, 288, 132548.	8.2	6
2	The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. Applied Energy, 2021, 283, 116310.	10.1	31
3	Enhanced bio-production from CO ₂ by microbial electrosynthesis (MES) with continuous operational mode. Faraday Discussions, 2021, 230, 344-359.	3.2	8
4	Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochimica Acta, 2021, 372, 137853.	5.2	28
5	Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochimica Acta, 2021, 377, 138039.	5.2	20
6	Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of the Total Environment, 2021, 776, 145934.	8.0	36
7	Behaviour of 3,4â€Dihydroxyâ€9,10â€Anthraquinoneâ€2â€Sulfonic Acid in Alkaline Medium: Towards a Longâ€Cycling Aqueous Organic Redox Flow Battery. ChemElectroChem, 2021, 8, 2526-2533.	3.4	13
8	Addition of weak acids in electrolytes to prevent osmosis in aqueous organic redox flow batteries. Electrochemistry Communications, 2021, 132, 107148.	4.7	5
9	How to go beyond C ₁ products with electrochemical reduction of CO ₂ . Sustainable Energy and Fuels, 2021, 5, 5893-5914.	4.9	19
10	Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. International Journal of Hydrogen Energy, 2020, 45, 2557-2568.	7.1	50
11	Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Npj Biofilms and Microbiomes, 2020, 6, 40.	6.4	45
12	Influence of temperature and other system parameters on microbial fuel cell performance: Numerical and experimental investigation. Chemical Engineering Journal, 2020, 388, 124176.	12.7	78
13	Toward a Sustainable Biocatalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. , 2020, , 385-401.		0
14	High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria. Frontiers in Energy Research, 2019, 7, .	2.3	22
15	Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. Journal of CO2 Utilization, 2019, 32, 1-10.	6.8	62
16	Stainless Steel-Based Materials for Energy Generation and Storage in Bioelectrochemical Systems Applications. ECS Transactions, 2018, 85, 1181-1192.	0.5	5
17	Reductive dechlorination of a chloroacetanilide herbicide in water by a Co complex-supported catalyst. Molecular Catalysis, 2017, 432, 8-14.	2.0	20
18	Dewatering and removal of metals from urban anaerobically digested sludge by Fenton's oxidation. Environmental Technology (United Kingdom), 2017, 38, 495-505.	2.2	20

#	Article	IF	CITATIONS
19	Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Research, 2016, 99, 24-32.	11.3	217
20	A new bipyridyl cobalt complex for reductive dechlorination of pesticides. Electrochimica Acta, 2016, 207, 313-320.	5.2	30
21	Direct electrochemical oxidation of a pesticide, 2,4-dichlorophenoxyacetic acid, at the surface of a graphite felt electrode: Biodegradability improvement. Comptes Rendus Chimie, 2015, 18, 32-38.	0.5	25
22	Reductive dehalogenation of 1,3-dichloropropane by a [Ni(tetramethylcyclam)]Br2-Nafion® modified electrode. Electrochimica Acta, 2014, 137, 511-517.	5.2	17
23	Combined process for 2,4-Dichlorophenoxyacetic acid treatment—Coupling of an electrochemical system with a biological treatment. Biochemical Engineering Journal, 2013, 70, 17-22.	3.6	59
24	Electrochemical oxidation of 2,4-Dichlorophenoxyacetic acid: Analysis of by-products and improvement of the biodegradability. Chemical Engineering Journal, 2012, 195-196, 208-217.	12.7	73